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Abstract. We introduce a transparent digital twin (DT) decision-making
approach without the use of explicit decision rules or rule-based mod-
els. Our approach utilizes ontological inference and simulation models
to explore possible decisions before applying them to the twinning tar-
get. As proof of concept, we provide an implementation of the proposed
framework purely based on widely-known technologies and standards,
and subsequently demonstrate the feasibility of our approach. We dis-
cuss benefits and drawbacks, and recognize that a ruleless approach to
DT decision making ultimately rests on an effective method of choos-
ing from a multitude of possibilities. Lastly, we consider potential future
work and exploration in the context of more effective automation and
simulation model usage.
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1 Introduction

Digital twins (DTs) are a domain overlapping with various other ICT fields,
such as the Internet of Things (IoT), modeling, simulation, runtime verification,
and many others [15]. At their core, DTs consist of a digital system tradition-
ally acting as a model for a physical one, often regarded as the physical twin
(PT), particularly in contexts of cyber-physical systems (CPSs). This notion has,
however, become more generalized whereby DTs are no longer used exclusively
for modeling PTs. Instead, they have developed to reflect what are now more
broadly referred to as twinning targets (TTs) [17].

According to Larsen et al. [15], DTs add value to their PTs! without unduly
compromising their operations. To meet this goal, a DT includes a level of con-
nectivity that allows it to receive from and transmit to its TT [14]. In CPSs,
this is typically manifested in the context of a sensor-actuator network (SAN).
In such scenarios, data is gathered by sensors on the PT side and sent to a
smart node capable of processing it on the DT side. Thereafter, based on some
logic or rules, certain actions are taken and commands are transmitted back to
the actuators on the PT side. The same process generalizes beyond CPSs and
SANSs, although instead of data only being transmitted between a DT and its
physical devices, such as sensors and actuators, it may also be transmitted in

1 Although they use the term “PT”, it should be noted that Larsen et al. do not limit
themselves to DTs modeling physical objects.
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purely a cyber context. In such cases, DTs may also be used for optimizing or
reconfiguring processes [15], networking, or software [9] in general.

To facilitate their data processing and decision making, various kinds of
models are essential for DTs [15,17]. Apart from architectural [13] and data
models [5], they often also depend on simulation models [3] used for creating
hypothetical scenarios whose results are subsequently utilized in making actua-
tion or reconfiguration decisions for the T'T. Moreover, DTs may use ontological
knowledge graphs for conceptual modeling, which allows for semantic data val-
idation and additional reasoning techniques [4,18]. Furthermore, for increased
accuracy, numerous loT and DT decision-making processes utilize rule-based
models [19,22,30], many of which typically follow an IF-THEN pattern.

Perhaps somewhat obviously, a DT will always require models containing
information about its TT’s structure and behavior. In addition, given numer-
ous examples of DTs making use of ontologies, simulations, and behavioral rule
models, as well as an abundance of model-driven techniques in the literature
[17], there is a naturally-arising question concerning the possibility of using on-
tological reasoning with simulations to power decision-making processes without
behavioral rule models. Thus, our paper explores this question as follows: in sec-
tion 2, we present a more specific context from related works in the literature as
well as our own contributions. In section 3, we outline our idea on a conceptual
level, and in section 4, we describe its implementation and proof of concept. In
sections 5 and 6, we discuss drawbacks and other potential approaches, and we
introduce ideas for future work, respectively. Finally, we conclude in section 7.

2 Background

As outlined in Larsen et al. [15], models are vital to DTs. Furthermore, as high-
lighted by Lehner et al. [17], model-driven engineering (MDE) techniques ad-
ditionally yield various benefits within the general field of DTs. For instance,
models can be used in model-to-model transformations, where source and tar-
get models adhere to different hosting platforms. Moreover, one may also apply
model-to-model transformations to more generative purposes, such as executable
code generation. Regardless of the specific goal, it is evident that MDE tech-
niques carry a shared aspect of increased automation. For this reason, we study
the extent of this automation in the context of ontological inference, simula-
tions, and rule-based models throughout the exploration of our own problem
and related work.

2.1 Related Work

Gabor et al. |7] partition the different levels of control exerted by a DT into sev-
eral tiers. Our work directly addresses their second tier for “immediate reaction”,
where actions are triggered by system state observations, and enables the third
tier of “planned reaction”, where reward functions steer planning.



Ruleless Digital Twins 3

Talasila et al. [24] introduce the “DT-as-a-Service” with valuable insights
about composing new DTs. They leave model management that assigns simula-
tion models to their physical counterparts as a static DT configuration task for
the user. While they identify simulation (“WHAT-IF analysis”) as a key require-
ment, they do not explore decision planning in detail.

Kamburjan et al. [12] reflect their program state into a knowledge base to
use the expressivity of ontologies. We take the opposite approach and initially
realize several of the necessary components entirely in the knowledge base.

Compagnucci et al. [4] utilize the Semantic Sensor Network (SSN) ontology
[28] for semantic data validation and class mapping to input models used for DT
code generation. They make use of finite-state machines as rule-based models for
defining the internal logic of their generated DTs. Although they acknowledge the
potential of using ontological inference from SSN, Compagnucci et al. ultimately
do not use this type of reasoning for any kind of automated rule or rule-based
model generation.

Michael et al. [19] present a model-driven software architecture for DT gen-
eration. For a DT to accurately plan and make its decisions, they propose the
use of case-based reasoning models in the form of {IF pattern THEN actions
EXPECT result}. They provide examples of parameterized commands contain-
ing conditions for the DT. With this, the DT attempts to find a matching system
condition case from an available repository of case-based models supplied by do-
main experts. If the case is applicable to the observed system conditions, its solu-
tion is applied. Otherwise, the DT’s reasoner chooses a similar case and adjusts
it. When the adjusted case mitigates the situation, it is added to the repository of
cases. Additionally, Michael et al. focus on the aspect of explainability whereby
a system should transparently explain its decision-making processes. To achieve
this, they use a feedback loop framework similar to MAPE-K [23]. Although
they rely on explicit rule models, they leave the rule adjustment details of their
example cases outside of the scope of their work.

While they do not strictly focus on DTs, some of the more related work
comes from PéRler et al. [22], who present a formal model of an architecture
for controlling an IoT-based smart home solution. They define decision-making
models and, through simulation experiments, show improved performance of the
system’s ability to satisfy its requirements with respect to regulating air temper-
ature and quality. They utilize the MAPE-K loop’s phases to perform different
tasks, such as the Analyze phase for checking current system configuration sat-
isfiability and the Plan phase for potentially choosing system reconfigurations.
An interesting point to note is that for the Knowledge portion of the MAPE-K,
Pékler et al. rely on a formal, ontological meta-model that describes elements
such as objectives and functions. In sub-section 4.1, we will demonstrate how
our ontological contributions (interestingly) represent similar concepts.
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2.2 Contributions

Having highlighted some of the relevant literature with respect to the use of
rules in DT and IoT decision-making processes, we will now outline the primary
and secondary contributions of this paper.

Primary contribution: We demonstrate the feasibility of ruleless DTs through
ontological reasoning and simulations for powering decision-making processes.
By removing the need for manually crafting and maintaining hand-written rule
models, we also show increased automation and reduced complexity, albeit at
the expense of greater computational cost.

Secondary contributions: We present lightweight additions to the SSN ontology
to facilitate the primary contribution and further demonstrate how this ontol-
ogy already contains most of the required concepts. Additionally, we present this
idea in the context of only using widely-known and well-accepted technologies
and standards. Lastly, as part of an available artifact?, we provide a generic con-
trol loop solution that conforms to our proposed ontology and is complete with
examples and interfaces intended for additional user-provided implementations.
This solution demonstrates seamless DT decision making by evaluating system
condition constraints, finding available mitigations, simulating hypothetical sce-
narios, and, as a result, picking optimal actions.

3 Approach

Fig. 1 visualizes an architectural perspective of all of the components of our
proposed system. Our approach begins with using an ontology to infer additional
model data from what was originally provided by the stakeholder. Since a DT
requires models that describe the structure and behavior of its TT anyway,
the idea is to let stakeholders create these in the form of knowledge graphs that
conform to the ontology as instance models. The ontology thus requires concepts
that allow stakeholders to describe sensors and actuators, in case of physical TT
components, and soft sensors [11] and configurable software parameters, in case
of cyber ones. In both cases, stakeholders would also need to describe their
properties of interest, which can be observed and/or actuated on. For this, we
ultimately envision stakeholders using a form of automated model export in
conjunction with tools such as Protégé [20].

The ontology should allow the instance models to contain desirable conditions
for the DT to maintain, e.g., {18 <= roomTemperature < 25}. In addition, to
express the power of DTs adding value to their T'Ts [15], they should also specify
optimizations (e.g., minimizing energy consumption), since, for example, given

2 The ontology, inference rules, example instance models, simulation model, and
the feedback loop solution are all available at https://github.com/ivanspajic/
ruleless-digital-twins and will be archived with a stable DOI.
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Fig. 1. An overview of the proposed system’s components. Here, the inference rules
and the control loop rely on the ontology.

a desired condition as {roomTemperature > 18}, the system could simply keep
the heater on the warmest setting for as long as possible to satisfy it.

Most importantly, as part of the semantic descriptions of the actuators and
reconfigurable parameters, it is also necessary for the ontology to provide differ-
ent types of effects these elements can have on their respective properties. By
knowing how an action changes a property, we can subsequently infer all relevant
actions the DT can take to potentially restore its desirable conditions. For exam-
ple, if a stakeholder is interested in observing a room temperature property and
defines a heater as an actuator that (generally) increases its value, then, should
the temperature drop below desired levels, it becomes inferrable that actuating
the heater might mitigate the problem.

Further following fig. 1, the instance model is run through an inference engine
to produce an inferred (expanded) one. In addition to the initial TT component
descriptions, their respective properties, and the desired conditions, the inferred
model will now also contain elements representing all possible optimization ac-
tions as well as actions for mitigating any unsatisfied conditions.

Next, this initial inferred model is supplied into the control loop component
during its initialization. The control loop is responsible for controlling physical
devices and software configurations on the TT side, and effectively acts as the
DT’s processing center. Since DTs need to handle both data input and output
in a feedback fashion, we propose for the control loop to follow the MAPE-
K [23] architecture. This allows us to organize different DT processing phases
into the corresponding phases of the MAPE-K. We envision the loop to func-
tion as detailed in fig. 2: first, the Monitor phase handles value observations for
the specified properties. With the observed property values, the Analyze phase
evaluates which, if any, desired conditions are unsatisfied and selects a set of
all possible mitigation and optimization actions from the knowledge base (ini-
tial inferred model). From this set of actions, the Plan phase constructs and
executes all possible simulation configurations, which may be split into several
intervals. This approach allows a simulation configuration to change component
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Fig. 2. A visualization of the parts comprising the control loop component based on
the MAPE-K [23] architecture.

states throughout various stages of its execution. A fitness function identifies the
optimal simulation’s combination of actions which the Ezrecute phase enacts.

Throughout the different stages in this process, the framework uses the
stakeholder-provided instance model to expand or filter its data. Initially, the
static instance model is dynamically expanded with the set of inferred actions
and then reduced by evaluating conditions and selecting possible mitigations.
The model is dynamically expanded again with all possible simulation configu-
rations before being reduced to a single combination of concrete actions.

In summary, our overall approach of ruleless DT decision making can be
represented analogously with a tree of possibilities, as visualized in fig. 3. In this
tree, each path to a leaf node represents a sequence of possible combinations of
actions the DT can choose to attempt to restore a condition and/or to optimize
for certain properties, whereby the DT’s ultimate goal is to prune the tree of
possibilities. Initially, with actions inferred from the instance model, the num-
ber of possible decisions grows. By analyzing which, if any, desired conditions
are unsatisfied, the DT selects the subset of actions that positively affect the
model. From the selected actions, the DT constructs simulation combinations,
and the number of possible decisions grows again. Finally, a fitness function on
the simulation results prunes the tree, ultimately yielding the DT’s final decision.

3.1 Technologies and Standards

Firstly, we require an ontology that can semantically represent IoT-relevant con-
cepts such as hosting systems, physical devices, software or soft sensors, and ob-
servable properties. For this, we recognize the Semantic Sensor Network (SSN)
and Smart Applications REFerence (SAREF) [6] ontologies as some of the more
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Fig. 3. The tree of possible decisions the DT can take based on the number of inferred
actions and possible simulation configurations.

established and widely-used candidates [4,8,21]. Of the two, we evaluate SSN to
be more representative of what is needed for our approach, based on the lower
number of missing required concepts. Although SAREF Core provides numerous
extension ontologies that could provide some of those concepts, it already con-
tains 33 classes, 64 object properties, and 8 data properties. Conversely, while
SSN is itself an extension of the Sensor, Observation, Sample, and Actuator
(SOSA) [28] ontology, it only contains 23 classes, 36 object properties, and 2
data properties, making it the more light-weight option.

Among inference engines, we opted to use Apache Jena [25] as it is one of the
most widely-known open-source technologies in the field with a long history and
wide-ranging standard feature support. Apart from allowing for different levels
of inference, Jena’s API also provides model-checking features for additional
verification against inferred models breaking ontological constraints.

We selected the Functional Mock-up Interface (FMI) [26] standard to power
our simulations due to its wide-spread industry support and increasing usage in
the field of DTs [1,10]. Our approach relies on the use of Functional Mock-up
Units (FMUs) as self-contained, executable simulation models for creating rele-
vant hypothetical scenarios. Moreover, apart from wide-spread adoption, FMUs
are fairly lightweight components and thus exhibit a high degree of execution
performance.

Lastly, to interact with RDF/OWL knowledge graphs and execute FMUs,
we utilize the dotNetRDF [29] and Femyou [2] .NET libraries, respectively.
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Fig.4. Some of example 1’s components annotated with their classes. Note that
sosa:ObservableProperty is a subclass of ssn:Property.

4 Implementation

We designed two examples for our proof of concept: example 1 (shown partially
in fig. 4) describes a room containing sensors measuring temperature, humidity,
and energy consumption, as well as actuators for affecting each property. As such,
it is representative of a T'T containing physical components as part of a CPS.
Example 2 (in the digital artifact) describes a soft sensor using an online lossy
compression algorithm with configurable parameters for adjusting the input data
size and the degree of lossiness, and is therefore representative of a T'T containing
cyber elements. Throughout this paper, we mostly use example 1 as a case for
demonstrating the different stages of our implementation.

4.1 Ontology

As outlined in section 3, although we make thorough use of SSN, this ontology
still lacks concepts crucial to our approach. Hence, we introduce a lightweight
extension by adding classes required to complete stakeholder-provided instance
models as well as the resulting inferred ones.

// OptimalCondition

‘for property’ exactly 1 Property

hasValueConstraint exactly 1 rdfs:Literal

reachedInMaximumSeconds max 1 xsd:int

Listing 4.1.1. :OptimalCondition class definition triples in Manchester syntax.

An important missing concept is that of desired conditions on targeted prop-
erty values. Here, we introduce the :OptimalCondition class whose definition
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triples are shown in listing 4.1.1. An :OptimalCondition requires three things:
(i) an ssn:Property, (ii) constraints on its value, and (iii) an upper limit on the
time taken to restore it, should the value of the respective ssn:Property fall out
of bounds.

Moreover, to facilitate cyber TTs, we add a :ConfigurableParameter class
as a subclass of ssn:Property and ssn:Input. :Configurable Parameters represent
adjustable soft sensor inputs used to affect their algorithms and subsequent
ssn:Outputs. In terms of example 2, both the size of input data and the degree
of lossiness ssn:Properties would be :ConfigurableParameters.

// PropertyChangeByReconfiguration is a subclass of PropertyChange
“for property’ exactly 1 Property

affectsPropertyWith exactly 1 Effect
alteredBy exactly 1 Effect

[T SR LR

enactedBy min 1 ConfigurableParameter

Listing 4.1.2. :PropertyChangeByReconfiguration definition triples in Manchester
syntax.

Two more classes we add are those of :Effect and :PropertyChange. The :Ef-
fect class in our prototype contains just two individuals, :Valuelncrease and
:ValueDecrease, representing the type of change done to an ssn:Property. The
purpose of the :PropertyChange class is to act as a wrapper facilitating the
mapping between ssn:Properties and the :Effects applied to them. Furthermore,
to support both physical and cyber TT elements, the :PropertyChange class
has two subclasses, namely :PropertyChangeByActuation and :PropertyChange-
ByReconfiguration, the latter of which is shown in listing 4.1.2. These classes
contain references to sosa:Actuators and :ConfigurableParameters, respectively,
and thus facilitate the construction of inferred models later in the process. As
shown in fig. 4, example 1 contains four : PropertyChangeByActuation individuals
(Effect references not included) relating to temperature and energy consumption
changes.

1 :optimizesFor rdf:type owl:ObjectProperty ;

2 rdfs:domain <http://www.w3.org/ns/sosa/Platform> ;
3 rdfs:range :PropertyChange ;

Listing 4.1.3. :optimizesFor definition triples in OWL.

Somewhat related to the :OptimalCondition class, but without the hard
value constraints, is the concept of targeted system optimizations. As shown
in listing 4.1.3, this was introduced as the :optimizesFor object property, with
ssn:Platform as its domain and :PropertyChange as its range. In example 1, a
system optimization for lower energy consumption is defined through the relation
:RoomM370 :optimizesFor :EnergyConsumptionDecrease. Overall, this concept
enables stakeholders to specify their optimizations while also facilitating simu-
lation result filtering, as discussed further in subsection 4.3.

1 // ActuationAction is a subclass of Action

2 hasActuator exactly 1 Actuator
3 setsActuatorToState exactly 1 rdfs:Literal

Listing 4.1.4. :ActuationAction definition triples in Manchester syntax.
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Moreover, we added the :Action class, which defines an action the DT can
take as part of its eventual decision. Individuals belonging to this class are not
directly supplied by the stakeholder but are instead inferred from the definitions
of :OptimalConditions, optimizations, and :PropertyChanges. Much like :Prop-
ertyChange, the :Action class has two subclasses, namely :ActuationAction and
:ReconfigurationAction. Whereas the former reconfigures physical components,
the latter is for cyber components. As shown in listing 4.1.4, each :ActuationAc-
tion contains a reference to a sosa:Actuator and a literal representing its state.
Similarly, a :ReconfigurationAction contains a reference to a :ConfigurablePa-
rameter and a literal representing the value to configure it to.

Lastly, it should be noted that, as an adjustable input variable, a :Con-
figurableParameter (as e.g., a float, double, etc.) can have a virtually infinite
number of values. Furthermore, there may be specific limitations on its value
ranges or distributions. Similarly, a sosa:Actuator, such as :AirConditioning Unit
in example 1, may have a wide range of programmable states that would be
unsuitable to represent as explicit instance model components. Thus, we include
the :ActionValueGenerator class as a subclass of ssn:Procedure to represent a
method (e.g., FMU execution, REST API call, or other) for deriving possible
sosa:Actuator states and :Configurable Parameter values, respectively.

4.2 Ontological Inference

There are two main objectives in using ontological inference rules in our system.
First, inference rules are used to verify the structural invariants of the model,
an example of which is shown in listing 4.2.1. Second, they are used for deriving
additional information from what is initially provided by the stakeholder. To
simplify both verification and additional triple creation, some inference rules
leave intermediate marker comments for subsequent rules to match on.
[rulede: (?restrictionl rdf:comment ?property)

(?restrictionl rdf:comment "verification mark")

(?7restrictionl xsd:minExclusive 7valuel)

(?restriction2 rdf:comment ?property)

(?restriction2 rdf:comment "verification mark")

(?restriction2 xsd:maxExclusive 7value2)

notEqual (?property, "verification mark")

ge(?valuel, ?value2)

-> ... print("Conflicting conditions detected!") ... ]

Listing 4.2.1. An example verification rule checking for conflicting OptimalCondition
constraints based on markings applied by a previous rule.

Since the DT ultimately has to pick a set of Actions that restore OptimalCon-
ditions and /or optimize for a Property, it is important that these Actions not be
contradicting. Most potential user-related constraint problems would typically
be prevented by using their tools’ built-in reasoners. For a single individual, they
would immediately highlight problematic cases, such as simultaneously defining
a constraint value to be <18 and >25. However, if stakeholders define multiple
OptimalCondition individuals pertaining to the same Property, they will also
be able to freely define them with mutually contradicting constraints such that
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the reasoner cannot highlight the issue. Without constraint verification rules,
the DT could encounter scenarios where it was forced to simultaneously simu-
late Actions with Actuators that apply conflicting Effects on the same Property,
ultimately preventing it from arriving to a meaningful decision.
[rule3a: (?thing rdf:comment ?propertyChange)

(?propertyChange meta:enactedBy ?actuator)

(?actuator rdf:type sosa:Actuator)

uriConcat (?actuator, meta:ActuationAction, ?7actionName)

-> (7actionName rdf:type meta:ActuationAction)

(?7actionName meta:hasActuator ?actuator) ]

Listing 4.2.2. An example rule for inferring ActuationActions.

To derive additional triples, the inference rules rely on instance models con-
taining crucial information, such as the PropertyChanges caused by various TT
components. As shown in listing 4.2.2, the inference rules match on this infor-
mation and expand an instance model with the Actions the DT can take. Each
Action will therefore either contain an Actuator or a ConfigurableParameter ca-
pable of causing the kind of PropertyChange required for restoring a specific
OptimalCondition constraint or optimizing for a Property.

The rules do not, however, simply infer Actions as a result of any Proper-
tyChanges present. In terms of the tree of possible DT decisions (see fig. 3),
branches are potentially immediately pruned away during the creation of an
inferred model. This is done by initially focusing on the specified OptimalCondi-
tions’ value constraints. Given a particular type of constraint, such as an upper
or lower bound, only the corresponding, mitigating PropertyChanges are selected
and thus only a subset of all possible Actions is inferred.

Since example 1 contains OptimalConditions with upper and lower bounds
for RoomTemperature, both the Actuators causing PropertyChanges with Val-
uelncrease and those causing PropertyChanges with ValueDecrease become rele-
vant. Because the AirConditioningUnit component is responsible for both types
of relevant PropertyChanges, an ActuationAction is inferred with it as its Ac-
tuator. Moreover, due to a specified optimization on RoomHumidity in the full
instance model, an additional ActuationAction with the Dehumidifier is inferred.
Note that, due to reasons discussed in 4.1, these inferred ActuationActions have
no concrete Actuator states specified and thus serve as placeholders until the
execution of their respective ActionValueGenerators (discussed further in 4.3).

4.3 Control Loop

In line with the MAPE-K [23] architecture, the control loop component fea-
tures four main phases assisted by the inferred model as its knowledge base.
Each phase interacts with the inferred model’s knowledge graph through the use
of SPARQL [27] queries. The control loop features interfaces for stakeholder-
provided Sensor and Actuator implementations used for Property observations
and Action executions, respectively. These implementations handle the DT’s
data input and output during the Monitor and Ezecute phases of the loop. The
following sub-subsections outline the phases in greater detail.
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Monitor Phase The Monitor phase invokes stakeholder-provided Sensor imple-
mentations and observes all relevant Property values to store them in a dedicated
Property cache, thereby effectively augmenting the inferred model.

Analyze Phase As discussed in section 3 and shown in fig. 2, the overall aim
of the Analyze phase is to further reduce the set of Actions used for simulating
hypothetical scenarios, thereby further pruning the tree of possible decisions. To
achieve this, the phase begins by querying the knowledge base (inferred model)
for all OptimalConditions and evaluating their constraints against the respective
Property values observed earlier.

SELECT ?7optimalCondition ?property ?reachedInMaximumSeconds WHERE {
7optimalCondition rdf:type meta:OptimalCondition .
7optimalCondition ssn:forProperty ?property .

7optimalCondition meta:reachedInMaximumSeconds ?reachedInMaximumSeconds . }

Listing 4.3.1. The SPARQL query used for selecting all OptimalConditions and most
of their elements. The constraints are selected with more complex, subsequent queries.

After selecting all OptimalConditions (listing 4.3.1), each one’s constraints
are evaluated against the values of their respective Properties. This evaluation
determines whether an OptimalCondition is unsatisfied and thus whether an
Action should be taken to restore it. During evaluation, each constraint is broken
down into its constituent atomic constraints (e.g., upper and lower bounds)
whose operators are used to determine the Effect and thus the PropertyChange
required from potential mitigation Actions. With this, a subset of Actions is
selected from those in the knowledge base, as shown in listing 4.3.2.

SELECT 7actuationAction ?actuatorState ?actuator ?property WHERE {
7actuationAction rdf:type meta:ActuationAction.
7actuationAction meta:hasActuatorState 7actuatorState .
7actuatorState meta:enacts ?7propertyChange .
7actuator meta:hasActuatorState 7actuatorState .
7actuator rdf:type sosa:Actuator .

?propertyChange ssn:forProperty ?property .
?property owl:sameAs @property .
?propertyChange meta:affectsPropertyWith @filter . }

Listing 4.3.2. The SPARQL query used for selecting all mitigating ActuationActions
with a filter parameter representing the Fffect.

As outlined in subsection 4.2, the knowledge base initially only contains
placeholder Actions without specified Actuator states or ConfigurableParameter
values. To obtain concrete Actions with specific states and values, stakeholder-
provided ActionValueGenerators are executed for every Action’s Actuator or
ConfigurableParameter. Assuming example 1’s OptimalConditions are unsatis-
fied, the relevant mitigation Action is the one containing AirConditioning Unit.
Executing AirConditioningUnit’s Action Value Generator thus produces all pos-
sible states for the Actuator and subsequently yields a concrete ActuationAction
for each one. This process is also used for optimization Actions.

Plan Phase The overall purpose of the Plan phase is to explore via simulation,
within the scope of the provided mitigation and optimization Actions, all hy-
pothetical scenarios possible and subsequently pick the optimal one to execute.
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This process can be divided into several steps: (i) generate all allowed combina-
tions of provided Actions, (ii) generate all possible configurations of simulation
intervals with Action combinations, (iii) execute all simulation configurations
and obtain their results, and (iv) select the optimal configuration.

Upon receiving potential mitigation and optimization Actions, all of their
allowed combinations are generated such that no Actions in a given set share
Actuators or ConfigurableParameters. Next, we generate simulation configura-
tions, each of which represents a unique simulation scenario setup. Because dif-
ferent Actuator states might affect Property values differently, we divide our
simulations into timed intervals to join with different ActuationAction combina-
tions. This allows Actuators to potentially restore OptimalConditions through
a variety of states in a given simulation. We deliberately choose not to include
ReconfigurationActions as part of the timed simulation intervals since changes
in cyber TTs depending on ConfigurableParameters do not necessarily occur as
time-dependent processes. Updated ConfigurableParameter values may produce
results instantly, or they may take longer than the OptimalConditions allow, due
to, e.g., cyber implementation details. Thus, combinations of Reconfiguration-
Actions are appended to simulation configurations as post-simulation Actions.
With this, a unique configuration is generated for every combination of Actu-
ationActions in every interval and with every combination of post-simulation
ReconfigurationActions. In example 1, for 4 AirConditioningUnit states, 2 De-
humidifier states, and a simulation granularity (depth of tree) of 4, a total of
4096 unique simulation configurations are generated.

We retrieve the simulation model (FMU) URI from the knowledge base. Al-
though our example uses a stakeholder-provided URI, it could alternatively be
derived through a query. This model represents the hosting Platform and thus
needs to comprise its Actuators as input parameters, as well as all of its system
Properties as both input and output parameters. With these FMUs, all simula-
tion configurations are executed based on values in the Property cache (current
state of the model), whereby for each simulation interval, Actuator states and
Properties are supplied, the simulation time is advanced to the duration of the
interval, and the resulting Property values are recorded for the next step.?

The Fitness Function Finding the optimum effectively relies on a fitness function
that successively filters simulation configurations out based on their resulting
Property values. Our current implementation of this function contains several
steps. Firstly, the function prioritizes simulation configurations that result in
the most OptimalConditions satisfied. In case of more than one configuration
sharing the highest number, the function checks their values of the Properties to
optimize for. In this step, each Property the system wishes to optimize for has its
value compared with the same Property from every other remaining simulation
configuration. In case that Property is optimized for with Valuelncrease, simu-
lation configurations with the highest value for that Property have their scores

3 The simulation of ReconfigurationActions is not currently implemented but may
easily be performed through, e.g., API calls.



14 I. Spaji¢ and V. Stolz

incremented. Similarly, if a Property is optimized for with ValueDecrease, con-
figurations with the lowest value for that Property have their scores incremented
instead. Scores are compared between all remaining simulation configurations,
and those with the highest total are chosen. Finally, if there are still multiple
configurations remaining, the function arbitrarily chooses from the collection.
Note that our fitness function currently does not address totally avoiding pro-
hibited TT states or the exclusion of Actions that might lead to them, both of
which are intended as future work.

Ezecute Phase Having identified the optimal simulation configuration, the Ez-
ecute phase performs all ActuationActions by invoking the corresponding Ac-
tuator implementations, e.g. through API calls, and ReconfigurationActions by
updating the ConfigurableParameters in the Property cache. These are then used
for the next Monitor phase’s soft sensor value observations.

5 Discussion

One of the biggest strengths of this approach is its flexibility to adapt to frequently-
changing TT components and conditions. Because the system repeatedly queries
its knowledge base, it is also resilient against changing stakeholder requirements.
Unlike with a rule-based system, our approach allows stakeholders to change
their OptimalCondition specifications and have the resulting DT decisions auto-
matically adapt in response. Moreover, in a rule-based system, the stakeholder
must provide a whole new rule (IF-THEN) for each new condition (the IF) and
desired decision (the THEN), whereas OptimalConditions (the IF) allow inference
and simulations in our approach to yield the decision (the THEN) automatically.
Furthermore, because our approach utilizes simulations, it also effectively looks
ahead into any potential future before making its decision.

Conversely, because it relies on FMUs for simulations, our approach requires
that they be provided by the stakeholder beforehand. Adopting our method thus
effectively creates a trade-off between the development time spent on rule-based
models versus FMUs, although this is arguably mitigated due to the aforemen-
tioned simulation benefits. Moreover, because FMUs may contain default or
starting values for their input parameters, it is possible to utilize them without
exact parameter matching, thus adding to their flexibility at the cost of simu-
lation accuracy. In addition, because we explore all potential scenarios within
the scope of the previously inferred Actions and all of their possible states and
values, our approach makes use of heuristics to combat combinatorial blowup,
which we anticipate to be especially problematic for low-powered or embedded
IoT processing devices. This blowup can be further reduced through more in-
formation about the types of possible Effects in the ontology. Our changes to
the SSN ontology only introduced two (qualitative) individuals, namely Valueln-
crease and ValueDecrease, for simplicity. Specifying more detailed Effect types
would increase instance model complexity, but would simultaneously help in
pruning down the tree of possibilities during the DT’s Plan phase.
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In comparison to Péafler et al. [22], our method exhibits some key differences
between our respective simulations and decision-making functions. Our method
utilizes FMUs while Péfsler et al. encode their simulation models entirely in
Maude. Furthermore, they apply domain knowledge to assign quantitative qual-
ity attribute values with respect to objective fulfilment in their decision-making
process, which subsequently allows them to select the maximum out of an avail-
able pool of scores and thus to choose the most appropriate model of premade
decision-making rules. Since our approach is intended for more general applica-
tions, our own default decision-pruning function aims to be domain-independent,
and, as a result, does not consider quantitatively scoring with respect to Optimal-
Condition restoration, although this does leave plenty of opportunity for user-
provided logic with scoring to be used instead. Regardless, one of the most promi-
nent differences between our works is in our solution’s rulelessness. Whereas
Pékler et al. rely on the aforementioned premade rule models, our approach
ultimately enables DTs to make decisions without them.

In general, however, if a ruleless DT is to successfully decide on a combina-
tion of Actions to execute, it must still explore its tree of possibilities. Without
streamlining, the DT is forced to consider all possible combinations of all Actions,
both necessary and unnecessary, occurring within every possible simulation inter-
val, all of which realistically equates to an expensively simulated trial-and-error
approach. For this reason, to ensure the drawbacks of combinatorial explosions
do not outweigh the benefits of flexibility, removing rules from DTs ultimately
comes down to employing a reasonably effective decision-pruning process.

6 Future Work

Currently, our framework is purely reactive such that actions are triggered only
by unmet OptimalConditions. It is straightforward to use the same simulation
process for all possible Actions or a subset thereof, to preemptively avoid vio-
lating OptimalConditions in the simulated state, i.e., after the next simulation
interval. As an example, a Property whose value is within its OptimalCondition
requires no Actions. However, given an FMU showing that taking no Actions re-
sults in the Property’s value falling outside OptimalConditions, the same process
would demonstrate that Actions should instead be taken proactively.

Our focus is on harnessing the power of simulation, and we plan to evaluate
against real T'Ts in the future. We will thus also investigate the feasibility of
implementing our planning solution on Talasila et al.’s [24] “DT-as-a-Service”
platform that comprehensively addresses model management, including FMUs.

In addition to providing the instance model (which is easily automated for
a given TT) with manual annotations for OptimalConditions and Property-
Changes, the quality of the simulations still hinges on the availability and fidelity
of the respective FMUs. We plan to explore lightweight methods for implement-
ing stakeholder preferences in the fitness function without extensive program-
ming effort; e.g., SPARQL queries over simulated configurations could provide
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the required flexibility in writing custom functions, though they might still be
far from user-friendly.

During construction of the initial DT, instead of annotating PropertyChanges
in the knowledge base, we could leverage FMUs to derive them. The FMUs must
already contain information essential for describing how Properties are affected,
so PropertyChanges might be automatically inferable from simple FMU test
executions. This may also allow for more accurate PropertyChanges, not only
describing FEffects, but also Property value ranges they hold for, subsequently
representing that, e.g., running an Actuator in different states causes different
kinds of Effects. Additionally, historical data about specific Action combinations
taken for specific T'T conditions could comprise cases to power a framework akin
to that of Michael et al. [19]. This could thus alleviate combinatorial blowups by
matching on previously encountered TT conditions that already reference the
optimal set of Actions to take.

Other potential future work includes exploring the feasibility of matching
DTs with FMUs, based on ontological Property descriptions. The semantic data
in the instance model, such as minimum/maximum values and ST units, could
be used in conjunction with FMI model descriptions to facilitate FMU and/or
parameter matching. With a given matching threshold, it may be possible to auto-
matically offer ontologically compatible FMUs and alleviate stakeholder burden.
Furthermore, with the introduction of solutions such as UniFMU [16], it may
prove feasible to utilize model-driven code generation techniques to produce the
required FMUs from additional information in the knowledge base. For example,
identifying or deriving an FMU from the body of engineering knowledge for a
room of a given size with components of given specifications sounds attainable.
Moreover, we envision vendors potentially providing FMUs for their systems.

7 Conclusion

In this paper, we explore and demonstrate the feasibility of ruleless DTs. By uti-
lizing widely-accepted technologies and standards (the SSN ontology, SPARQL
queries, and FMUs), we present an implementation comprising ontologies, infer-
ence rules, simulations, and the MAPE-K architecture that enables the removal
of explicit rule-based models from DT decision-making processes. We provide
two instance models (available in the artifact) as examples and use one of them
to demonstrate the different stages of the approach. The resulting combina-
torial explosion of combinations needs heuristics that select promising simula-
tions to remain manageable. Furthermore, we discuss the pros and cons of both
the approach and the technologies used. Lastly, we discuss future work, among
which are implementation improvements as well as explorations into the seman-
tic matching of simulation models.
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