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Abstract. Workflows coordinate tasks across departments or organisa-
tions, where correct execution depends not only on control dependencies
but also on the availability of shared resources. This paper presents Re-
Act, a resource-aware active object language for workflow modelling. In
ReAct, method declarations serve as contracts: they specify alternative
resource profiles in their signatures, giving methods multiple execution
options when resources are limited. Methods can be invoked only once
their dependency conditions are satisfied; at activation, a feasible re-
source profile is then selected and allocated. We encode the language in
Maude and show how workflows can be executed, simulated, and verified
against their declared dependencies and resource requirements.

Keywords: Active objects - Resource allocation - Contracts - Maude -
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1 Introduction

A business process is a collection of structured tasks to fulfil a certain goal
within an organisation [1], and a workflow [21] describes the arrangement of tasks
and resources within a business process. Workflows can sometimes span across
multiple departments or even organisations, with multiple workflows running
concurrently. These workflows may share resources while one or more tasks in a
workflow local in an organisation are depending on the completion of tasks in the
concurrent workflows running in different organisations. Planning this kind of
workflows is challenging as it requires specific knowledge from multiple domains
to have an overview of how resources are shared across multiple workflows as
well as how tasks depend on each other.

Therefore, while there exists tools, e.g., Workflow Management Systems
(WMS), that are used to model and automate business processes across het-
erogeneous tasks while enforcing the intended business logic [8,20], the support
for capturing the aforementioned concerns for cross-organisational workflows is
limited and inflexible [19].

To address this, we proposed in our earlier work [18] a core language, based
on [3], that supports specifying the dependency between tasks (modelled as
methods) in method declarations. This allows workflow models to be statically
checked, using a type system, to ensure that method invocations respect the
declared dependencies.
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This paper extends the core language in [18], by allowing resource require-
ments to be specified in the method declaration. Here, resources are referred to
discrete and reusable entities (not consumable or continuous quantities), such as
doctors, cars, equipment, required for executing a task. The extended language,
called ReAct, enables workflow planners to specify not only one, but multiple
alternative sets of resources (each alternative is referred to as a resource profile).
Such alternative resource profiles can enhance flexibility of method execution
when resources are limited as well as enable decision support in selecting re-
sources based on the metrics that need to be optimised.

With this extension, method declarations in our language can be consid-
ered as a form of contracts that have to be fulfilled before a method can be
invoked: methods can start executing only when all the depending tasks have
been completed, and at least one of the required resource profiles is available.
Such contracts can potentially facilitate workflow planning by automating the
coordination of tasks and resources based on the constraints on execution order
and required resources provided by domain experts.

We also provide an original implementation of a Maude framework, which
gives our language a generic, executable operational semantics well suited to
workflow execution. The framework captures the behaviour of workflows mod-
elled in our language, and allows us to check if one or all executions respect the
conditions specified in the method declaration.

The rest of the paper is organised as follows: Section 2 presents the syntax
and operational semantics of ReAct, extending the core language introduced
in [18] with explicit resource declarations and resource-aware rules. Section 3
provides a brief overview of rewriting logic and Maude, and introduces a novel
executable specification of the extended semantics in Maude. Section 4 shows
the execution and simulation results of an example workflow, illustrating how
resources and dependencies are managed and how Maude’s search functionality
supports verification of behavioural properties. Section 5 discusses related work,
and Section 6 concludes the paper with future work.

2 Core Language

In this section, we introduce our core language, ReAct, that allows specifying
resource requirements for individual tasks in a workflow model. The language
is based on active objects [4], which uses the actor model of concurrency and
cooperative scheduling. It is an extension of our earlier work [18] enforcing task
dependency in workflows. We first present the syntax with an illustrative example
and then discuss the relevant semantic rules.

2.1 Syntax

Fig. 1 shows the abstract syntax of ReAct, which extends the core language de-
fined in [18] by having the notion of global resources R and by allowing specifying
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P 2= RCD{T z;s} s u= x = rhs | skip | if e then s else s
R = 0|{¢A}UR | await f? |returne|s;s
CD == class C {T z; M} rhs == e|new C | f.get
M = Sg{T z;s} | e.m(e) after fs | elm(e) after fs
Sg = T m(T z) [DP] [RP] e == x|b| fs|this
T := B |Fut(B) fs == True|fts| fsV fs
B == (C|Bool|Int|Unit]|... fts == f7] fts A fts
DP := dp| DPV DP dp == C.m|dpAdp
RP := rmp| RPV RP rp == (t,n, A) | rpAmp

Fig. 1. Abstract syntax.

resources required RP to execute a task in a workflow at the level of method
declaration.

A ReAct program P consists of a resource pool R, class declarations CD
and a main method. The resource pool is a multiset of pairs (¢,.4) representing
a resource of type ¢ with uninterpreted attributes A. A class declaration has a
name C, fields T of types T and methods M. A method M is defined by its
signature Sg, specifying its name m and return type 7T, formal parameters T
of types T, the task dependencies DP, and the resource requirement RP of
method m, where DP and RP are optional, indicated by square brackets [ ]. A
method body consists of local variables Z of types T and a sequence of state-
ments s.

Task dependencies DP specified in the method signature are in disjunctive
normal form (DNF) and need to be completed prior to invoking method m.
We use C'.m to denote a depending method m of class C. We model resource
requirements RP similarly, where each rp denoted as (t, n, A), indicating the
quantity n of resources of type ¢t with attributes A, where n € NT. The signature
of methods that do not depend on any other task and not require any resource
is written as T m(T z).

Example 1. Let DP = DP1V DPy, RP = RP,V RPs, where DP; = C;.my,
DP5 = Cz.mg/\CQI.m/z, RP, = (tl, ny, A1) and RPy = (t27 na, AQ)/\( /2, n/2, .AIQ)
The signature T m(T x) DP RP specifies the constraints on tasks dependency
and the resource requirements of method m. Precisely, the signature states
that method m is depending on the completion of method m; of class C; or
method mg of class C2 and method mf of class C%; and indicates that the
method requires either nq resources of type t; with attributes A; or ns resources
of type to with attributes Az as well as n), resources of type to with Aj.

Consequently, one can consider the signature of a method as a contract specifying
the completion of certain tasks and the requirements of resources that needs to
be fulfilled prior to executing the method.

Types are standard, where Fut(B) is a future type with values of type B.
Statements, as well as the right-hand side of an assignment, are similar to those
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. ' { (Intern, A;), (Intern, A,), (SeniorNurse, A3),
2 (JuniorNurse, A4), (JuniorNurse, As), (SeniorResident, Ag),
(LabTechnician, A7)

...}

6  class Hospital {
7 Unit registerPatient()

8 req (Intern,1,...) V (JuniorNurse,1,...) { ... }

9

10 Unit startTreatmentPlan()

11 dep RadiologyUnit.imagingScan A LaboratoryUnit.bloodTest
12 req (Intern,1,...) A (JuniorNurse,2,...) { ... } }

12 class CardiologyUnit {

15 Unit assessPatient()

16 dep Hospital.registerPatient

17 req (SeniorResident,1,...) A (SeniorNurse,1,...) { ... } }

19 | class RadiologyUnit {

20 Unit imagingScan()

: dep CardiologyUnit.assessPatient

22 req (JuniorResident,1,...) V (SeniorNurse,1,...) { ... } }

[CE
et

214 class LaboratoryUnit {

25 Unit bloodTest ()

26 dep CardiologyUnit.assessPatient

27 req (LabTechnician,1,...) V (Intern,1,...) { ... } }

o { Hospital h = new Hospital();

30 CardiologyUnit cu = new CardiologyUnit();
31 RadiologyUnit ru = new RadiologyUnit();

32 LaboratoryUnit lab = new LaboratoryUnit();

34 Fut<Unit> f1
35 Fut<Unit> f2
36 Fut<Unit> £3
37 Fut<Unit> f4
38 Fut<Unit> £f5

h!registerPatient();

cul!assessPatient() after f17;
lab!bloodTest() after £27;
ru!imagingScan() after £27;
h!startTreatmentPlan() after £37 A f47;

Fig. 2. Illustrative example.

in typical active object languages, except for method invocations. Each method
invocation is associated to a future f, and we use await f? to suspend a pro-
cess until the associated method returns, i.e., f? is evaluated to true, and f.get
to retrieve the value store in f. Methods can be, either synchronously or asyn-
chronously, invoked only after a (possibly empty) set of methods have completed.

To specify the depending methods, we use an after clause containing fs that
is in DNF. To invoke a method, either at least one conjunction fts in fs is
evaluated to true or fs is True, i.e., no depending method is specified. Remark
that both DP and fs are required to type check whether methods are invoked
conforming to the task dependency specified in the method definition and we
refer the interested readers to [18] for the details.
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en =€ | obj | invoc | res | F | cn cn p == idle | {l | s}
obj ::= o(a,p, q) q:=0{l]s}lq
invoc ::= invoc(o, f, m,T) val i=wv | L
res =0 | {(¢,.A)} Ures vie=ol| f|blk
F = fut(f, val) s == cont(f) | suspend | ...
a, luz=c¢€|[...,z—v,...] rhs == e.m(e) |elm(e)|...

Fig. 3. Runtime syntax.

We illustrate the syntax with the simple workflow model presented in Fig. 2,
which consist of four classes and a main method. For the clarity of the code,
we prepend a keyword dep to the task dependency and req to the resource
requirements in the method declaration.

The resource pool is specified in Lines 1-4. The four classes are defined
in Lines 6-27, while the main method is defined in Lines 29-38, which first
creates the objects of the four classes. The workflow then starts with registering
a patient at the hospital (Line 34), which does not have any task dependency, but
requires either an Intern or a JuniorNurse, as reflected in the method signature
in Lines 7-8. Note that the specific attributes of the resources are omitted here.
After the registration, the patient is assessed by the CardiologyUnit (Line 35),
which requires one SeniorResident and one SeniorNurse (Lines 15-17). Only
after the patient is assessed, two tasks can proceed in parallel: a blood test
(Line 36) in the LaboratoryUnit, requiring a LabTechnician or an Intern, and an
imaging scan (Line 37) in the RadiologyUnit, requiring a JuniorResident or a
SeniorNurse (Lines 20-22), as shown in the method signatures in (Lines 25-27)
and (Lines 20-22), respectively. Finally, once both the blood test and the imaging
scan complete, the patient can start the treatment plan at the hospital (Line 38),
which requires an Intern and two JuniorNurse, as specified in Lines (10-12).

2.2 Semantics

We present in the following first the syntax of the runtime configuration of
ReAct, and then proceed to the semantics that manages the task dependency
and resource requirements for method invocations in the core language.

Runtime syntar. The runtime syntax is defined in Fig. 3. A runtime configu-
ration cn consists of objects, invocation messages, a global resource pool and
futures, denoted as 0bj, invoc, res and F, respectively. Each element in the con-
figuration is separated by space. An empty configuration is written as e. An
object comprises an object identifier o, a map a associating object fields to val-
ues, a running process p and a pool ¢ of processes waiting to run on the object.
A process {l| s} consists of a map ! binding local variables to values and a
sequence of statements s, or can also be idle.

An invocation message invoc(o, f, m,7) includes the identity of the callee o,
the associated future f, the invoked method m, and its actual parameters ©.
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(AsyNc-CALL-AFTER)
o(a,{l | x = elm(e) after fs ; s}, q)
— o(a,{l|if fs {z = e!m(e) ; s} else {suspend ; z = e!m(e) after fs ; s}}, q)

(SYNCc-CALL-AFTER)
o(a,{l| z = e.m(e) after fs; s}, q)
o(a,{l|if fs {z =e. m( ) ; s} else {suspend ; z = e.m(e) after fs; s}}, q)
(AsyNc-CaLL)
= [e]lact U =[€]act [ fresh
o(a,{l|z=elm(e); s} q)

— o(a,{l|z=Ff]s},q) invoc(o,f,m,v) fut(f,Ll)
(Sync-CALL) (Invoc)
o' =[eact 0#0 f fresh {l| s} = bind(o, f, m, v, class(0))
o(a,{l |z =em(e); s}, q) o(a,p,q) invoc(o,f, m,v)
o(a {llf—e'm( )iz =fget;s} q) — o(a,p,qU{l]s})

Fig. 4. Semantics — part I [18].

A future fut(f,val) consists of its identifier f and a value val which is v if the
future is resolved or | otherwise. The resource pool res is a multiset of pairs
(t, A), each of which indicates the type ¢t and attributes A of a resource.

The statements are extended with cont(f) to return control to the caller pro-
cess and suspend to move a running process into the pool of pending processes,
while the right hand side of an assignment is extended with method invocations
without the after clause.

Operational semantics. A selection of representative semantic rules is presented
in Figs. 4 and 5. The remaining rules are standard and can be found in Fig. 8
in the appendix. For clarity, the semantic rules only show the components in a
runtime configuration that are affected by the reduction steps. Fig 4 shows the
rules defined in [18] that handle method invocations based on task dependency.
Rules AsyNC-CALL-AFTER and SYNC-CALL-AFTER handle asynchronous and
synchronous method invocations, respectively, where task dependency has to
be taken into account, by rewriting the invocation to a conditional statement
checking the evaluation of fs in the after clause. If it returns True, the invocation
is reduced to one without task dependency; otherwise, a suspend statement is
prepended to the invocation so that the process will be moved to the pool of
pending processes. The evaluation of fs has been defined in [18] and can be found
in Fig. 9 in the appendix.

While task dependencies in method calls are checked explicitly at the point
of invocation, resource requirements are handled implicitly only when activating
the invocation at the callee object (see later in Fig. 5). Thus, method calls
without task dependency are handled as usual, as shown in rules ASYNC-CALL
and SYNC-CALL, emitting a message invoc(o, f, m,v), which in turn is used to
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(SELF-SYNC-CALL)
o=[elaot T =[€lact f fresh f =I(destiny)
{l' | s’} = bind(o, f’, m, v, class(o)) ares = fpr(l'(rr),res) # 0
o(a,{l|z=-em(e);s}t, q) res
— o(a,{I'[ar — ares] | s’ ; cont(f)}, qU{l |z = f".get;s}) res\ares fut(f',L1)

(AcTivATE-NORESREQ) (AcTIvVATE-RESALLOC)
l(rr) =10 lar) # L
o(a,idle,qU {l| s}) o(a,idle,qU{l| s})
— o(a,{l]s},q) — o(a, {l]s},q)

(AcTtivaTE-TOALLOC)
Wrr) £ 0 l(ar) =L ares =fpr(l(rr), res) # 0
o(a,idle,qU{l | s}) res
— o(a,{l[ar — ares] | s}, q) res\ares

(RETURN) (SELF-SYNC-RETURN)
v = [e]acr f = l(destiny) f = l(destiny)
o(a,{l|return e ; s}, q) fut(f,L) res o(a,{l' | cont(f)},qU{l]| s}) res
— o(a,{l] s}, q) fut(f,v) resUl(ar) — o(a,{l] s}, q) resUl(ar)

Fig. 5. Semantics — part II. Resource-aware extensions of operational rules.

create a process through a binding process by rule INvOC. For a method m
defined as T m(T ) DP RP {T y ; s} in class C, we define:

bind(o, f, m, 7, C) =
{destiny — f, rr+— RP, T— 7, ar — L, §+— L | s[o\this]}

that returns a process executing method m by binding its local variable destiny,
required resource profiles rr and formal parameters T to future f, RP and v,
respectively, while the allocated resources ar and local variables 7 remain unde-
fined. Remark that DP is not required in the function, and in the case RP is
not specified, i.e., no resource is required, rr is mapped to (). Note also that the
local variables destiny, rr and ar are reserved keywords.

Fig. 5 presents the rules that we extend from those in [18] to manage resources
in ReAct. Resource allocation is handled implicitly through activating a process
residing in the pending pool, which is controlled by the three ACTIVATE rules.
To allocate resources to a process, rule ACTIVATE-TOALLOC first checks if the
process has been granted any resources and if any of the required resource profile
is available in the resource pool. Then, it allocates the resources specified in the
available profile, by updating the local variable ar, and removes them from the
pool. In other words, resource allocation will only take place when the process
first becomes active in the callee object.

The evaluation of the set of required resources is handled by the auxiliary
function fpr(I'(rr), res) (“feasible profile”) as shown in Fig. 6, which returns the
(multi)set of selected resources to be allocated ares. Activating processes that
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fpr(rp,res) if RP=rp

fpr(RP,res) = AR if RP = RP'V rp and AR = fpr(rp, res) # 0
fpr(RP’,res) if RP = RP'V rp and fpr(rp,res) = ()
fpr((t, n, A), res) if rp = (¢, n, A)
AR U fpr(rp’,res\AR) if rp = mp' A (¢, n, A)
fpr(rp, res) = and AR = fpr((¢, n, A),res) #0
0 if rp=1p’ A (¢, n, A)
and fpr((¢t, n, A),res) =0

{(t, A)} if (t,A) € resandn=1

fpr((t, 1, A), res) = {t,A)yUAR if (t,A) €resand n > 1

and AR = fpr((t, n—1, A), res\{(¢, A)}) # 0

0 otherwise.

Fig. 6. Definition of fpr(RP, res).

do not require any resource or have already been granted the required resources
is carried out by ACTIVATE-NORESREQ and ACTIVATE-RESALLOC.

Resource allocation for synchronous self-calls are handled when the methods
are invoked, as shown in rule SELF-SYNC-CALL. To make a synchronous self-
call, the rule first checks if any of the resource profiles required by the method is
available in the resource pool. Then, it allocates the available required resources
to the newly created process and appends statement cont(f) to the sequence of
statements s’, which is later used to return control to the caller process. Finally,
the allocated resources are removed from the resource pool. Allocated resources
will only be returned when the corresponding method returns, as seen in rule
RETURN and SELF-SYNC-RETURN.

As we can see from the semantics, methods can only be executed if two
conditions hold. Firstly, invoking a method needs to fulfil the task dependency.
Therefore, to successfully invoke a method, one of the conjunctions in fs must
be evaluated to true, i.e., all the futures in a conjunction are resolved. Secondly,
an invoked method can only start execution if one of the profiles specified in its
resource requirements (if any) is satisfied, given a global resource pool.

3 Formalising Active Objects in Maude

Achieving an executable formal specification along with automatic verification
is a complex task. As seen in Section 2, the language encompasses three main
aspects. Firstly, we define the syntax of ReAct to identify all the entities of the
language that constitute its grammar. Secondly, we specify the runtime configu-
ration to capture how these entities are structured during execution. Lastly, we
provide the operational semantics that governs the behaviour and describes how
the configuration is evolving.
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Correspondingly, we need a formal language and toolset capable of expressing
rich structures, composing conditional behaviours, and directly executing their
specifications. These considerations led us to choose the Maude language [6], as
an implementation of rewriting logic that satisfies our requirements. We choose
this language for several reasons: (i) it is expressive enough to encode ReAct’s
static entities and their relationships; (ii) its equational theory provides the
necessary predicate logic for defining equations, computational constraints and
feasibility checks; (iii) its executable rewriting logic semantics allow rule ap-
plication to depend on complex guards such as resource availability or future
resolution; and (iv) it includes built-in search and model checking facilities that
enable automated verification of properties.

3.1 Maude and Rewriting Logic

The Maude language is a high performance language and tool set based on
rewriting logic that supports formal specification, execution, and analysis of
systems. Its integration of equational logic with rewrite rules enables concise
modelling of system behaviour and rigorous reasoning about system properties
[5,6]. Formally, a rewrite logic theory is a tuple (X, EU A, R), where (X, EU A)
is a membership equation logic theory: X' is the signature that specifies sorts,
subsorts, operators and messages, E a set of (possibly conditional) equations, A a
set of equational attributes for operators (e.g., associative, commutative), and R
a collection of (possibly conditional) rewrite rules.

The different modules in Maude can be implemented using an object-oriented
specification that encompasses objects, messages, classes, and inheritance. An
object is represented as (O : C'| a1 : v1,...,an : vn), where O is the object name, C
is an instance of class, a; are attribute identifiers, and v; are their corresponding
values for ¢ = 1...n. Concurrent states in object-oriented modules are mod-
elled as multisets of objects and messages, and interactions between objects are
governed by rewrite rules:

crl I : (O1:Cr | asy) ... (On:Chlas,) My ... My,
= (0, : C}, |a'si1> {0, : C}, |a'sik> M ... M, if Cond.

3.2 Execution Semantics

In this section, we show how we employ a Maude-based rewrite theory to define
the language and the semantics of ReAct. The executable artefact (code and
example) is archived in [9]. Formally, the operational semantics of ReAct is
implemented in Maude as:

defReAct = {EReActy (E U A)ReAct7 RReAct}

where Y et defines the structure and data types for the main entities of ReAct
(objects, processes, method signatures, invocations, resources, etc.); (EUA) geact
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ReAct Maude
Object class OBJECT | id : 0id, fields : Int,
proc : ProcessState, suspended : ProcessPool
Method class METHOD | sig : 0id, body : 0id
Signature class SIGNATURE | ret : Int, name : MethodName,
params : ParamList, dp : DP, requires : ResourceProfile
Resource class RESOURCE | type : String, attrs : AttrSet,
state : ResState, ResCost : Int
Resource sort ResourceProfile
Profile op noneProfile : —> ResourceProfile
op needs : String Int AttrSet -> ResourceProfile [ctor]
op _and_ : ResourceProfile ResourceProfile ->
ResourceProfile [ctor assoc comm id: noneProfile]
op _or_ : ResourceProfile ResourceProfile ->
ResourceProfile [ctor assoc comm id: noneProfile]
Statement |sort Statement
é op _= _!_(_) : Object Expr 0id Args -> Statement [ctor]
‘E‘ op _= _._(_) : Object Expr 0id Args —-> Statement [ctor]
U>)’ op _= _!_(_)after_ : Object Expr 0id Args Object ->
Statement [ctor]
op _= _._(_)after_ : Object Expr 0id Args Object ->
Statement [ctor]
sort Statement
ops skip eos suspend : —-> Statement [ctor]
op await : Oid -> Statement [ctor]
Process sort ProcessState
State ops idle : -> ProcessState
op { _ | _ } : LocalvVarList Statement —-> ProcessState [ctor]
Future sort FutureState
class Future | value : ValueOption, state : FutureState
ops unresolved resolved : —-> FutureState [ctor]
Equations Equations: clauseSatisfied(FS), bind(O,F,...), get(F),
feasibleProfile (RP, RS)
8 |Messages |Messages: op invoc (O, F,M,A)
-E 0id FutureOid 0id Args —-> Msg [ctor]
‘E" Semantics |Rewrite Rules:
o | rules crl [rewrite-rule-name] : State => State’ if Equation
[72]
. Model Checking: search [[n, m]] in ModId : initial-state =>*
Propertles pattern [such that cond]

Table 1. Correspondence between ReAct and Maude

specifies the language’s equational theory, specifying computations such as mes-
sage construction, future binding, and the equational properties of resources;
and Rpeact defines the dynamic semantics via a set of rewrite rules that capture
operational behaviour. These rules include method invocation, process creation
and suspension, and resource allocation and release.

The encoding of ReAct into executable and analysable Maude specifica-
tions without loss of information is based on the mappings shown in Table 1.
The specifications of the grammar is implemented in an object-oriented mod-
ule named REACT-SYNTAX. The operational semantics of the language is encoded
as a set of conditional rewrite rules in another object-oriented module called
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REACT-SEMANTICS. These modules enable us to perform simulation of the be-
haviour using rewrite engine of Maude.

Table 1 summarises the main sorts, classes, and operators defining ReAct.
The class METHOD associates a method body with its SIGNATURE. The latter cap-
tures task dependencies dp and required resource profiles requires—both are
required for method execution—using the sort ResourceProfile and its con-
structors (noneProfile, needs, _and_, _or_) to define alternative resource com-
binations. Statements comprising method bodies are represented by the sort
Statement, defined by operators including asynchronous _= _!_(_) and synchro-
nous method calls _= _._(_), method invocations with dependencies after, and
control-flow instructions such as skip, return, suspend, and await, etc.

The runtime configuration consists of floating entities i.e., objects, messages,
resources, and futures. Each object is an instance of OBJECT whose process
state is built with the sort ProcessState and the operator {_ | _}, which binds
destiny, method parameters, and the resource binding to a LocalVarList and
pairs them with the statement sequence. Invocation messages invoc(...) float
in the configuration and when consumed by the INVOC rule, create a process
that is placed in the ProcessPool to await resources or dependency resolution.
Method results are represented by Future objects (with value and FutureState
= resolved/unresolved). The global pool of resources is modelled by a set of
objects instances of class RESOURCE within RESOURCE-PQOOL.

The operational semantics leverages Maude’s rewriting engine: sorts, classes,
operators, equations, messages, and (possibly conditional) rewrite rules. To-
gether, they form a rewrite theory whose executions are driven by pattern
matching and equational evaluation representing the auxiliary equations. Rules
have the shape crl [name] : State => State’ if Condition .. The left-hand
side matches entities in the global configuration; the condition is simplified by
the auxiliary equations (e.g., resource feasibility or future resolution); the right-
hand side updates object fields, futures, process pools, and the resource pool,
possibly emitting or consuming coordination messages. Messages (invoc(...),
releaseRes(...), etc.) serve as coordination artefacts: one rule can emit a mes-
sage to signal a request, and another rule consumes it to advance execution.

As an example, Fig. 7 presents the conditional rewrite rule ACTIVATE- ALLOC.
When activation requires resources (recorded in rr) and none have yet been allo-
cated (ar == noneProfile), the ACTIVATE-ALLOC rule computes a feasible profile
via feasibleProfile(...), updates the pool, moves the process to execution, and
stores the chosen profile in ar. The application condition of the rule indicates
that the process must have resources requested but not allocated.

Since rules operate within an associative-commutative multiset, the rewrite
engine of Maude explores them nondeterministically, so the same initial configu-
ration may evolve along multiple interleaving paths, producing a branching exe-
cution tree from any given initial configuration. For example, after an invoc(...)
message is emitted, Maude may immediately apply the Invoc rule to suspend
the callee’s process or postpone it in favour of other available rewrites. Similarly,
activate-alloc only fires when its guard conditions are satisfied (i.e., when re-
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crl [activate-alloc]
< RP : RESOURCE-POOL | pool : ResS >
< 0 : OBJECT | id : 0Cid, fields : Fld,
proc : idle, suspended : { LVL ; (rr :== RP) ; ( ar :== noneProfile )
| s3};Q>
=>
< RP : RESOURCE-POOL | pool : reserveResources(feasibleProfile(RP,
ResS), ResS) >
< 0 : OBJECT | id : 0Cid, fields : Fld,
proc : { LVL ; (rr :== RP) ; (ar :== feasibleProfile(RP, ResS)) | S },
suspended : Q >
if RP =/= noneProfile.

Fig. 7. Rewrite rule ACTIVATE-ALLOC

sources become available), competing nondeterministically with other enabled
rules for execution.

Maude’s rewrite engine serves as the core executor of ReAct operational se-
mantics. It continuously scans the global configuration—composed of objects,
messages, and resource pools—matching the left-hand side patterns of condi-
tional rewrite rules, evaluating guard conditions via the underlying equational
theory, and applying the corresponding state transformations. Messages such as
invoc(...) act as explicit staging points, enabling one rule to emit a message
that another rule can subsequently consume. Auxiliary equations (e.g., bind(. ..)
and releaseRes(...)) handle process creation setup and resource release, while
rewrite rules directly update object fields, process states, and resource allocations
within an executable framework. This inherent concurrency and interleaving
of invocation, suspension, resource-aware activation, and execution is precisely
what Maude’s built-in search and model checking tools can potentially exhaus-
tively analyse. We hence have tool support to ensure that ReAct correctness
properties hold across all possible execution paths.

4 Simulation and analysis

This section presents an executable Maude example, which integrates resource
consumption and release with the semantics of method calls, to show correct
allocation and termination behaviour. To this end, we revisit the example from
Fig. 2 inspired by coordination in a hospital emergency department. The work-
flow models asynchronous medical tasks across different units, subject to both
task dependencies and resource constraints.

4.1 Example

The workflow comprises five asynchronous tasks: registerPatient, assessPatient,
bloodTest, imagingScan, and startTreatmentPlan. The workflow starts with re-
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gisterPatient on the Hospital object. Once registration completes, assessPa-
tient on CardiologyUnit is triggered with explicit after clauses. Similarly, only
after assessPatient completes, both bloodTest on LaboratoryUnit and imagingScan
on RadiologyUnit are triggered and these two tasks run concurrently. When both
tasks bloodTest and imagingScan complete, startTreatmentPlan is initiated at
Hospital.

Each method invocation is an asynchronous task whose activation is delayed
until its after dependencies are resolved. In addition, each method declares
a required resource profile via requires, allowing alternatives through and/or
combinators. These contracts are used to test feasibility at activation time; if
sufficient matching resources are available, they are allocated atomically and the
process moves from suspended to active.

All methods draw from a shared RESOURCE-POOL containing limited person-
nel with roles and attributes. Each RESOURCE specifies a type (e.g., "Resident",
"Intern"), and their attributes like (years(5) ; shift("day")). We recall that
the pool is modelled as a multiset; the attributes are uninterpreted constants,
whose only role is exact matching. We use the following initial resource pool:

(Intern, (years(2) ; shift( ))), (JuniorResident, (years(5) ; shift( ),
(SeniorResident, (years(10) ; shift( ))), (Nurse, (years(5) ; shift( ),
(JuniorNurse, (years(5) ; shift( ))), (JuniorNurse, (years(5) ; shift( ),
(SeniorNurse, (years(10) ; shift( )) (SeniorNurse, (years(10) ; shift( ),

),
(LabTechnician, (years(5) ; shift( D))

4.2 Execution

Using Maude’s rewrite command rewrite in ACTIVE-OBJ-RESOURCE-TEST : init,
the Maude engine performs iterative applications of the operational semantics
rules until no further rewrites are possible. Execution completes almost instantly
after 453 rewrites, and the system reaches a stable, terminating state, indicating
successful execution and resource handling: every object in the final configuration
has reached an idle state and no rule of the operational semantics is enabled.
Inspection of the final configuration shows that:

1. All tasks completed with correct resource discipline: the RESOURCE-
POOL in the final state is identical to the one in the initial state. Thus, every
allocation obtained during execution has been returned to the pool, leaving
it ready for subsequent tasks.

2. All futures resolved: every declared method call in our example has fin-
ished execution, i.e., all associated futures have been resolved and received
a value.

3. No pending invocations or suspended processes: There are no invoc
messages in the configuration, and every object has proc : idle with no
suspended calls. With no calls in progress, all guards satisfied, and no rules
enabled, the system has reached termination.

Next, we discuss how Maude’s search mechanism allows us to check all pos-
sible executions of our system, as the asynchronous method calls give naturally
rise to non-determinism.
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4.3 Reachability analysis

We use Maude’s search to systematically explore the state space of ReAct (spec-
ified as a rewrite theory). By selecting the search arrow =>! (canonical final
states), we can target terminating configurations. Pattern matching over futures,
resource states, and objects lets us pose precise queries that reveal liveness issues
related to resource consumption, leading to deadlocks, that a single rewrite trace
might miss.

All Futures Resolved. To check liveness, we searched for final states where all four
futures that we declare in the code (fregRecord, fcardioAssess, fimagingScan,
fbloodTest and finitiateTreatment) were resolved:

search in ACTIVE-OBJ-RESQURCE-TEST : init =>!

< fregRecord : Future | state : resolved >
< fcardioAssess : Future | state : resolved >
< fimagingScan : Future | state : resolved >
< fbloodTest : Future | state : resolved >
< finitiateTreatment : Future | state : resolved >
C:Configuration .

This query returned 345 solutions, showing that from the initial configuration all
futures resolve in canonical final states (=>!) across many interleavings. The num-
ber of solutions emerges from intermediate rewriting sequence (e.g., message handling
and resource release) that produce syntactically distinct but observationally equiva-
lent configurations with respect to futures and resource availability. Note that this is a
program-specific property here, and not necessarily true for ReAct programs in general.

Resource Release. Similarly, we use the canonical state arrow =>! to check that specific
resources are available in all terminating states:

search in ACTIVE-0BJ-RESOURCE-TEST : init =>!
< resourcePool | pool :
(< r4 : RESOURCE | type : "Junior Resident",
state : available > : _) >
C:Configuration .

This query succeeds and shows that the Junior Resident (identified by r4 in the
Maude model) is always released at termination. Conversely, searching with state :
consumed produced no solutions, thus verifying that no resource leaks occur in termi-
nating states.

Global pool restoration. To show that all terminating states restore the resource
pool to exactly what it was in the initial state, we define an observer poolOf
Configuration -> ResourceSet that extracts the pool from any configuration, and a
predicate samePool(C) that checks pool0f(C) == poolOf (init) (equality is checked
up to the ACU multiset operator of the pool, so order does not matter). We then ask
Maude to explore all final states reachable from init and return only those that violate
the invariant. Any solution to the query below would be a counterexample:
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search in ACTIVE-OBJ-RESOURCE-TEST : init =>!
C:Configuration
such that not samePool(C)

This search returned No solution meaning Maude found no terminating state with
a different pool. Therefore, in every terminating run, all reserved resources are released
and the final pool is identical to the initial one.

As a separate sanity check, we also requested at least one final state where the
invariant holds and nontrivial activity occurred (some future resolved and at least one
asynchronous call was issued):

search [1] in ACTIVE-OBJ-RESOURCE-TEST : init =>!
< fm : FUTMON | resolved : RF >
< counter : COUNTER | count : N > C:Configuration
such that samePool(C) and (RF =/= noneF) and (N > 1)

Together, these two searches demonstrate that every terminating execution restores
the resource pool exactly to its initial multiset.

5 Related Work

Extensive work has been carried out for workflow modelling and numerous formal
approaches have been proposed to analyse workflow behaviour as well as resource
management.

UML Activity Diagrams [10] are competitive with WMS notations and provide a
powerful notation for modelling control and data flows, they also allow limited commu-
nications. However, they lack explicit constructs for modelling inter-workflow message
exchanges, making cross-organisational workflows difficult to capture precisely. Both
BPEL [17] and BPMN [16] offer rich control-flow constructs for modelling workflows;
however, the former lacks inter-workflow messaging, and although the latter supports
message exchanges, the dependencies between concurrent workflows are not captured,
which prevents reasoning about global workflow consistency and dependencies.

Coloured Petri Nets [13] and YAWL [2] are generally comparable in expressivity
to many workflow languages, but control-flow modelling for multiple instances and
advanced synchronisation remains limited, and inter-workflow communication is par-
tially supported via hierarchical models in CPN-based approaches. Across all these
notations resources remain annotations (lanes/roles or tokens) rather than contracts:
there is no built-in notion of a resource profile with feasibility, and disciplined release
tied to method activation/return.

BPMN-based resource provisioning strategies by Duran et al. [11] focus on dynamic
allocation at the business process level. Although they provide executable semantics
in Maude, resources are not part of the program syntax: resource requirements are
not declared in language artefacts, but parameterise scheduling policies at the process
level. Similar to this paper, RPL [3] targets cross-organisational workflows and sup-
ports explicit notion of the dependency of task execution order at the level of method
invocation. Compared to RPL, ReAct not only models task dependency at the level of
method invocation, but also allows specifying at the level of method definition, which
makes it possible to verify that the workflow behaviour complies with the required
execution order. While resources are explicitly handled, i.e., acquired and released,
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in RPL, resources in ReAct are managed implicitly when methods are activated and
return according to the requirement specified in the method definition. Resources in
Real-Time ABS [14] are capacity provided by deployment components that are con-
sumed explicitly using cost/deadline annotations and recovered when time advances,
which are quite from how resources are modelled and handled in ReAct.

Cooperative contracts by Kamburjan et al. [15] specify a method’s pre/post con-
ditions, frames, and overlap-at-suspension clauses, backed by a denotational trace se-
mantics for an active object language. The focus is on deductive specification and
verification of contracts around await and get, not on resource-aware execution, and
the scheduling of the underlying language is unaffected.

Certification of time as a resource through type systems has been addressed by
Crary et al. [7], where a virtual clock is threaded through types to enforce constant
or input-dependent step bounds at compile time. In these approaches, running time is
abstracted into a consumable quantity (steps or ticks), and the type checker provides
verified bounds on this abstract resource. However, they do so by ignoring runtime
dynamics: there are no shared pools, no alternative resource profiles, and no allo-
cate-release discipline responsive to feasibility. Moreover, the work does not address
the coordination and communication of concurrent workflows.

fBPMN [12] assigns a first-order logic semantics to BPMN, allowing tasks, events,
and gateways to be translated into logical formulas for reasoning about control-flow
properties such as consistency and soundness. However, it remains focused on branch-
ing and sequencing and does not provide an operational account of communication
or synchronisation between concurrent processes. In particular, operational semantics
for allocation, suspension, activation, and release of resources lie outside the scope of
fBPMN'’s logic-based formalisation.

In contrast, ReAct is a resource-aware active object language that places resource
requirements in method declarations and treats them as interface contracts. The latter
are enforced by the operational rules during execution; i.e., at activation, the rules
check feasibility, select and consume a concrete set of resources, and at return they
release exactly that set. Dependencies are expressed as future-based guards and checked
before a call proceeds, enabling correct ordering within the workflow under concurrency.
Finally, the semantics and runtime are executable in Maude, its rewriting logic supports
systematic search to demonstrate workflow termination, respect of dependencies, and
absence of resource leaks across all interleavings.

6 Conclusion

In this paper, we present a resource-aware active object language, ReAct, for workflow
modelling. The language extends the core language introduced in [18], which focuses
on handling task dependency, by allowing specifying resource requirements in method
signatures. By stating these two components at the level of method declaration, the
method signatures can be seen as contracts that have to be fulfilled prior to execution;
specifically, only when the specified depending tasks have completed and when the
required resources are available. ReAct allows specifying alternative resource profiles in
the method signature, which consequently increases the flexibility of method execution
when resources are limited while keeping call sites free of resource details. Thus, such
specification in method declarations can potentially contribute to automated workflow
planning, where the specifications are provided by domain experts, and we believe that
ReAct fills a gap in workflow modelling.
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The operational semantics enforces an allocate-at-activation discipline: a method
can only be invoked only when its dependency-guards (when present) hold, and the
invoked method can only be activated if a feasible set of available resources exists. The
selected resources are allocated atomically on activation and released on return. In ad-
dition, we develop an original, executable Maude semantics which allows us to analyse
the behaviour of workflows modelled in ReAct. Using Maude’s search functionality on
our example, we demonstrated workflow termination and absence of resource leaks.

Future work. As mentioned, ReAct is an extension of the core language introduced
in [18], where a type system is proposed to verify that the behaviour of a workflow
respects the task dependency specified in the method signature. Therefore, another
possible extension would be to integrate this type system in our presented Maude
framework to enrich its functionality. Our interest in a type system is also the reason
why we are not yet focusing on more dynamic resource consumption, e.g., through
parameters, computation, or transformation: while this is trivial to support in the
runtime system, it has implications for static analysis where an upper bound has to be
derivable.

We are also planning to introduce a priority-aware scheduler that leverages (i)
priority levels declared in method definition (e.g., emergency vs. routine), and (ii)
attributes of available resources (e.g., cost, availability, usage time) to decide which
process should be activated and which concrete resources to consume. The scheduler
can use a scoring function that balances priority, resource attributes, and estimated
waiting time in the suspended queue while still giving precedence to methods with
higher-priority.

Finally, we plan to investigate in how far Maude’s built-in temporal logic model
checking can be used to verify other behavioural properties of ReAct workflows, such as
verifying that at the start of every recursive or iterative execution, the global resource
pool has been restored to its initial configuration, in other words, resources are released
between iterations and not held indefinitely.

Acknowledgements. This work is part of the CROFLOW project: Enabling Highly
Automated Cross-Organisational Workflow Planning, funded by the Research Council
of Norway (grant no. 326249).
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A  Appendix

In this appendix, we present semantics omitted from Figs. 4 and 5 and the definition
of the evaluation [fs]r in Fig. 9.

(Ir-TRUE) (Ir-FALSE)
lelaot,» = True [e]aot,F = False
o(a,{l|if e then s; else s ; s},q) FF o(a,{l|if e then s; else sz ; s}, q) F
—o(a,{l|s1;s},q) F —o(a,{l|s25s},9) F
(AwAIT-TRUE) (AWAIT-FALSE)
v# L v=_1
o(a,{l| await f?; s}, q) fut(f,v) o(a,{l| await f?; s}, q) fut(f,v)

— o(a,{l] s}, q) fut(f,v) — o(a,idle, qU {l | await f7; s}) fut(f,v)

(GET) (NEW)

v#E L o' =fresh o' = atts(C,0")
o(a,{l|z=fget;s} q) fut(f,v) o(a,{l|z=new C; s}, q)
—o(a,{l|z=wv;s}q) fut(f,v) —o(a,{l|z=0";s}q) o (a’,idle,D)

(ConTEXT) (Sk1p) (SUSPEND)
cn — cn' o(a,{l|skip;s},q) o(a,{l]|suspend; s}, q)

cn en’ — en’ cn” — o(a,{l|s},q) — o(a,idle,qU {l | s})

Fig. 8. Semantic rules [18] omitted from Figs. 4 and 5. Assignments for fields and
local variables are typical and omitted). The auxiliary function atts(C,0’) returns the
default values of the fields of class C and o’ is the value for this.

gy = (e e e

[fes]r if fs = fts
e ALFLE I fis = fis' A 2
Lis}e = {[[f?]]p if fis = f?
_ JTrue if fut(f,v) e FAv#L
LF71r = {False otherwise.

Fig. 9. Definition of the evaluation [fs]r [18], with minor adjustment due to updated
syntax.
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