
Automated Clone Elimination in Python Tests

Sebastian Kingston1, Violet Ka I Pun2 , and Volker Stolz1,2

1 University of Oslo, Norway
{smkingst,stolz}@ifi.uio.no

2 Western Norway University of Applied Sciences, Norway
{vpu,vsto}@hvl.no

Abstract. Code clones are a well-known software quality metric with
existing tools for detection and (semi-) automated elimination for com-
mon programming languages. While they are usually eliminated by ex-
tracting duplicate code into shared methods/functions, we are here look-
ing in particular at Python code for test cases, where clones stem from
repeated test cases with primarily different arguments and expected re-
sults. In this scenario, the ideal solution is not introducing shared code,
but rather using parametrized tests from the unit testing framework.
We combine an existing clone detector (NiCad) with our own code trans-
formation that eliminates code clones in Python test cases using the
pytest framework. We show the usefulness of our approach by survey-
ing open source Python projects that can benefit from our refactoring
and evaluate the performance and correctness of our transformation by
comparing unit-test results before and after.

1 Introduction

Testing plays an indispensable role in modern software development. A common
way of writing a test is by copy-pasting another test, then adjusting it slightly
to fit the new test case. This can result in duplication of code, so-called code
clones, the result of which make the test suite bloated and harder to maintain.
Eldh [5] found that generally 30%–50% of test cases in test suites have code
cloning overlap, with some test suites measuring up to 80%. This problem of
poorly designed test cases is often due to test code not receiving the same level
of attention as the code used in production. Test cases often break with the
principle of generality; instead of one general test case which can be used to
cover many different scenarios, there are multiple test cases with minor variations
between them.

For testing in Python, pytest [6], a powerful and flexible testing framework,
has emerged as a popular choice among developers due to its simplicity and
scalability for writing test code. This article focuses on reducing pytest test
suites through parametrization. This is done by presenting and describing the
implementation of a novel tool for refactoring test suites: Pytest Test Refactorer3,
or PyTeRor for short.
3 The source code for PyTeRor can be found at https://github.com/semaki2000/PyTeRor

and is archived at https://doi.org/10.5281/zenodo.11145543; also see [8].

https://orcid.org/0000-0002-8763-5548
https://orcid.org/0000-0002-1031-6936
https://github.com/semaki2000/PyTeRor
https://doi.org/10.5281/zenodo.11145543

2 Sebastian Kingston, Violet Ka I Pun , and Volker Stolz

@pytest.mark.parametrize("input1, input2, expected",
[(1, 2, 3), (5, 10, 15)])

def test_calculator_add(input1, input2, expected):
calculator = Calculator()
result = calculator.add(input1, input2)
assert result == expected

Fig. 1: Usage of pytest parametrization

Code clones is a term referring to fragments of source code that are equal or
similar to each other. Code clones can occur through developers purposely copy-
pasting code from one place to another. They can also occur inadvertently, for
example by developers following the same specific patterns when writing code,
such as the way they iterate through a list. Code clones are also referred to as
duplicated clones or software clones in the literature.

A code fragment, or fragment of code, is a single continuous piece of code.
When two fragments of code are clones of each other, we call it a clone pair. One
fragment of code can be part of multiple different clone pairs. A clone class is
a group of code fragments, where each fragment is in a clone pair relation with
each other fragment in the group.

The threshold of similarity required for two fragments of code to be con-
sidered code clones is only vaguely defined in the literature. To combat this
vagueness, syntactical clones are generally classified into three types (we elide a
fourth type, semantic clones) [13]: Type 1 or Exact clones, where two fragments
of code are identical. This category allows for differences in the surrounding
comments and whitespace, but when that is abstracted away, the fragments are
exactly the same.

Type 2 or Renamed clones are like Type 1 clones, except they can also have
differences in literals, identifiers, and types. As none of these elements affect the
structure of the code, Type 2 clones are structurally equal. Although actual val-
ues may be different, the structure of statements and the way the code is built
up is identical between two Type 2 clones. They can be further distinguished be-
tween consistent or blind clones, depending on whether there exists a consistent
renaming of identifiers between the members of a pair.

Type 3 or Gap-clones/Near Miss clones are like Type 2 clones, except they
can also have some statements added or removed. The accepted variation be-
tween two code fragments to classify them as Type 3 clones lacks a clear, consis-
tent threshold, as different tools and literature have different definitions of what
makes a Type 3 clone pair.

The code duplication that our approach eliminates are hence Type 2 clones,
that is within method bodies, where values in function calls and expected results
in assertions differ, but the overall structure of the body is the same. We achieve
this by introducing parameters for the actual values used in the test, and using
the parametrization-annotation of pytest to provide the single remaining copy
of the test with multiple instances [6]. Figure 1 shows an example of a pytest

https://orcid.org/0000-0002-8763-5548
https://orcid.org/0000-0002-1031-6936

Automated Clone Elimination in Python Tests 3

Source code

Isolate test
suite

Refactored code

Files

Isolate test
suite

Run code clone
detection

Remove
unsuitable

clones

Normalize
clones

Split clone
classes

Recurse ASTs,
finding differences

Extract
differences into new

decorator

Unparse AST and
format code

Phase performed 
per run of tool

Phase performed 
per clone class

Clone class analysis

Fig. 2: Phases of PyTeRor

parametrized test. Note the correspondence between the string literals in the
annotation and the formal parameters of the method.

This article is structured as follows: Section 2 gives a technical overview
of our approach. In Section 3 we evaluate our implementation on open source
repositories. Finally, in Section 4, we present an outlook and our conclusions.

2 Design

In this section we describe the architecture and workflow of our tool PyTeRor,
which identifies suitable candidates and refactors them into parametrized tests.
Figure 2 shows the different phases of PyTeRor.

Clone detection. To successfully apply PyTeRor, the target code base must ob-
viously contain existing pytest tests. As there is no standard project-layout for
Python projects, the test suite must be located in the project. We then invoke
NiCad [4], an existing scalable, flexible code clone detector (top row in Figure 2).
NiCad comes with an existing Python grammar and a configuration for Type 2
clone detection, to which we make some small adjustments: with the original
grammar, the None literal is parsed as an identifier, which causes problems in
the refactoring further down the line4. As for the configuration, the two key-
configurations are that we reduce the minimum size of clones to just one line,
and that we are interested in blind, not just consistent, clones, as this will allows
us to parametrize both identifiers and literals, instead of just the latter. For a

4 See our support request in https://txl.ca/forum/viewtopic.php?f=22&t=1148.

https://txl.ca/forum/viewtopic.php?f=22&t=1148

4 Sebastian Kingston, Violet Ka I Pun , and Volker Stolz

more detailed discussion of the use of NiCad, we refer the reader to Kingston’s
thesis [8].

The other two rows in Figure 2 describe the core functionality of PyTeRor:
from NiCad’s set of detected clones (exported as a data structure via XML),
we remove any clones that are not in the bodies of methods following pytest’s
convention for test cases (method names prefixed with test_ or not in a class
whose name starts with Test). We also do not handle tests that already make use
of non-trivial parametrization — this mostly excludes tests where parameters are
computed in some way and more invasive structural updates would be necessary
to enable reuse.

Next, we normalize the AST of all clones by removing additional decorators
and docstrings. We keep track of them to recombine them later. This allows us
for example to merge a test into an existing parametrized test by adding the
required additional parameters to the existing decorator.

The detected clones also need to be split into distinct clone classes. Not
every detected clone pair lends itself automatically to parametrization. The goal
of these splits is to ensure that, upon refactoring, clones will be kept within
their own scopes, so as to avoid capturing names. Therefore, after splitting clone
classes based on scope, each of our new clone classes should contain exclusively
clones in the same scope. The clone class is split here based on three rules that
should guarantee this property:

1. There are clones in different modules.
2. One or more clones are in the global scope whilst one or more clones are

inside a class-scope.
3. There are clones in different class-scopes.

If any of these rules are fulfilled, the clone class will be split. For clone classes
spread out over N modules, the clone class is split into N new classes. Likewise,
for class scopes, if a clone class is spread out over N classes, we split into N new
clone classes. All clones in the global scope of the same module are split off into
a separate class as well.

PyTeRor also provides some facilities to combine clones detected in distinct
files, provided they are in the global scope, which we call cross-file parametriza-
tion. More ways of splitting the clone class, such as splitting based on attributes,
are performed at a later point in the pipeline. These cannot be performed along
with the initial splits on scope and decorators, as they are dependent on infor-
mation gathered from the next step.

We adopt the AST analysis to compute the difference of clone pairs, and
check if they are amenable to refactoring, using Python’s ast module. We re-
cursively check that if AST node types match for each clone in the class. This
phase can lead to additional splitting, but otherwise results in a list of differences
in the Constant, Name and Attribute nodes occurring in the ASTs. As these
are syntactical differences, we also need to check the scope of any variables —
we cannot refactor a mix between local and non-local variables. The straightfor-
ward case is refactoring all-global variables, whereas some additional steps must

https://orcid.org/0000-0002-8763-5548
https://orcid.org/0000-0002-1031-6936

Automated Clone Elimination in Python Tests 5

def test_a():
a, b = 1, 2
a + a

def test_something():
something, other = "some", "text"
something + something

Fig. 3: Consistent local variables

be taken for all-local variables. Figure 3 shows an example for two consistent,
all-local clones that can easily be refactored.

Finally, we generate the refactored test with a parametrize-decorator, taking
care to introduce fresh identifiers where necessary, combining any docstrings, and
unparsing the AST. Figure 4 shows the before and after of two unit tests being
refactored into a single parametrized unit test according to our scheme.

3 Evaluation

In this section, we describe how we evaluated our tool. This includes choosing
available — ideally representative — sample input to refactor, and the exact
metrics to evaluate against.

3.1 Picking Code Repositories

As there is no pre-existing library of code bases containing a large amount of
Type 2 clone test functions, we must create our own set of code bases to evaluate
against. In doing this, there are multiple attributes we must take into account.

Firstly, and most importantly, we want repositories with pytest test suites.
If there are no pytest tests in a suite, none of the tests can be parametrized.
Repositories which do not recognizably utilize any specific testing framework can
be picked, as we can import pytest in order to use parametrization when needed.
This is only the case if the test suite follows the pytest naming conventions.
Suites which use both pytest and another testing framework such as unittest
can be part of the evaluation, as the pytest tests can still be parametrized. How-
ever, this will lead to problems if PyTeRor attempts to parametrize unittest
tests.

Another attribute to take into account is that test suites must be of a certain
size. This is because we are looking for test suites containing Type 2 code clones.
As the size of the test suite grows, the potential clones grows with it. Not all
clones can be parametrized, so a higher amount of clones is better. The arbitrary
minimum threshold we use for the amount of defined tests a repository must
contain to be relevant is 100 defined tests.

To find repositories, we use GitHub, as it is a go-to platform for open-source
code. The process of finding candidate repositories is performed manually, by
trawling GitHub, filtered by Python as a topic, looking into different repositories

6 Sebastian Kingston, Violet Ka I Pun , and Volker Stolz

def test_multiplication_simple():
calc = Calculator(precision=4,

unit="deg")
a, b = 2, 3
expected = 6

actual = calc.multiply(a, b)
assert actual == expected

def test_multiplication_advanced():
calc = Calculator(precision=7,

unit="rad")
a, b = 0.3145, 4.2535
expected = 1.3377258

result = calc.multiply(a, b)
assert result == expected

a) Two unit test code clones (Type 2)

@pytest.mark.parametrize(
"parametrized_var_0, parametrized_var_1, parametrized_var_2,
parametrized_var_3, parametrized_var_4",
[

pytest.param(4, "deg", 2, 3, 6, id="test_multiplication_simple"),
pytest.param(7, "rad", 0.3145, 4.2535, 1.3377258,

id="test_multiplication_advanced"),
],

)
def test_multiplication_simple_parametrized(

parametrized_var_0,
parametrized_var_1,
parametrized_var_2,
parametrized_var_3,
parametrized_var_4,

):
calculator = Calculator(precision=parametrized_var_0,

unit=parametrized_var_1)
(a, b) = (parametrized_var_2, parametrized_var_3)
expected_result = parametrized_var_4
actual_result = calculator.multiply(a, b)
assert actual_result == expected_result

b) Code clones combined and refactored into a single parametrized unit test

Fig. 4: Unit tests pre- and post-refactoring

to investigate their test suites. If a repository has a sufficient number of tests,
we check for the existence of code clones in the test suite by running NiCad on
it. We also ignore repositories which have configured pytest in such a way that
the standard test discovery rules are no longer valid. This is because PyTeRor
does not support this configuration.

In order for a repository to qualify for the evaluation, installing requirements
and running the test files should be achievable with relative ease. Repositories in

https://orcid.org/0000-0002-8763-5548
https://orcid.org/0000-0002-1031-6936

Automated Clone Elimination in Python Tests 7

repo# URL & commit hash

1
https://github.com/onekey-sec/unblob.git
f4df4165e2452833eaced99307547c72c1e6d4e9

2
https://github.com/pallets/flask.git
b90a4f1f4a370e92054b9cc9db0efcb864f87ebe

3
https://github.com/psf/requests.git
a58d7f2ffb4d00b46dca2d70a3932a0b37e22fac

4
https://github.com/tiangolo/fastapi.git
1b105cb000dbf14157c38467ecc728447de49c8d

5
https://github.com/sphinx-doc/sphinx.git
768cf5e7ac63c7b26b6f3bd9cdfd2c5bf8ba4654

6
https://github.com/nvbn/thefuck.git
c7e7e1d884d3bb241ea6448f72a989434c2a35ec

7
https://github.com/davidhalter/parso.git
279fd6903ec9575f233067f3fc7b47f6fd6705d0

8
https://github.com/davidhalter/jedi.git
a4574a50d01e88316ddf554419cae64f547a7d70

9
https://github.com/pylint-dev/astroid.git
7a3b482b9673243d2ccc895672eb1e452f5daa82

Table 1: Repositories used in evaluation

which the tests cannot be run, for some reason or other, have not been included.
To gather data on how many tests pass and fail before refactoring, we run the
tests before we use PyTeRor on the repository. After running PyTeRor, we will
again run the tests, then compare the results.

After considering these factors, we picked nine open source repositories for
our evaluation (see Table 1). For the detailed steps necessary to run the test
cases see our artefact and accompanying thesis [8]. We leave automated trawling
for repositories and test case execution to future work.

3.2 Metric Selection

The goal of the evaluation is two-fold: firstly, we want to measure whether the
refactoring itself was successful. This implies that we changed the structure of the
code, without changing its functionality. Secondly, we want to measure whether
we managed to reduce the size of the test suite. We want to do this both for
standard PyTeRor, and for PyTeRor with cross-file parametrization enabled.

In order to measure whether the refactoring itself was a success, we can
compare the running of the tests before and after utilising PyTeRor. Here, there
are three key metrics: number of tests run, number of tests passed, and number
of tests failed. Optimally, an equal amount of tests should be run, with the same
numbers of passing and failing tests as before PyTeRor was employed on the

8 Sebastian Kingston, Violet Ka I Pun , and Volker Stolz

code base. If this is not the case, we have not refactored successfully. Should the
number of tests in total be different, we will have inadvertently removed tests
from the test suite. Should the number of passing and failing tests be different,
we will have inadvertently changed the behaviour of certain tests. Even if the
amount of passing and failing tests should be the same, the possibility still exists
that some of the tests may have “switched” places. For example, one test which
previously passed could now fail, whilst one test which previously failed could
now pass. This would be an error in our refactoring, but would not be noticeable
using this metric. The number of tests switching places can also be generalised: N
previously passing tests may now fail, likewise N previously failing tests may now
pass. Without performing a manual check of the pytest output, we have no way
of asserting that it is the same tests passing and failing as previously.

We propose the following metric to evaluate if the test suite has been effec-
tively reduced: it is important to separate between tests and test runs. A single
test can have multiple test runs, due to the parametrize decorator. However, it
is still only one test. When measuring the number of tests, we are referring to
the number of actual def test_ constructs in the code, and not parameterized
instances of the test. These def test_ constructs must be either in the global
scope or in a class scope. In order to measure the number of tests, PyTeRor
includes an option for measuring the amount of tests contained in the test suite
pre-refactoring. This option also measures how many tests have been removed
by PyTeRor due to parametrization. Both of these values are output, along with
the amount of tests removed due to parametrization as a percentage of total
pre-existing tests, when using the -ex or –experiment option.

We should also take into account how many potential clones existed in the
first place. Therefore, we add the total number of tests removed and the total
number of target clones successfully parametrized, then calculating this sum as
a percentage of the total number of relevant clones in the suite. This number
gives us a more accurate view on the amount of clones which will no longer be
discoverable as clones, either due to their own removal from the suite, or due to
the removal of other clones from the suite.

3.3 Evaluation

Tables 2 and 3 present the results of our evaluation and the relative measures. In
Table 2, for each of the nine repositories (#), we show the number of contained
test definitions (T), and the number of (p)assing, (s)kipped or (f)ailed test runs
as a baseline. The numbers in parentheses denote tests that xfailed or xpassed5.
Tests which xpassed are in parentheses next to the number of passed tests, whilst
tests which xfailed are next to the failed tests. The following columns show for
both modes of operation ((r)egular and (c)ross-file parametrization) the number
of detected clone classes (cs), the number of clones (cl) as identified by PyTeRor,
the number of tests removed (tr), and the number of clone classes which have
been parametrized (cp). The final batch of columns indicates changes in passing,

5 xpassed tests are passing tests which were expected to fail (xfail).

https://orcid.org/0000-0002-8763-5548
https://orcid.org/0000-0002-1031-6936

Automated Clone Elimination in Python Tests 9

T p s f
cs cl tr cp p/s/f (diff)

r c r c r c r c r c

1 161 791 0 92 2 2 4 4 1 1 1 1 0/0/0 0/0/0
2 383 482 1 1 48 44 8 6 1 1 1 1 0/0/0 0/0/0
3 329 587 14 1 16 16 23 23 6 6 5 5 0/0/0 0/0/0
4 1908 2004 75 1 309 312 1197 1172 270 435 130 119 −5/0/+5 −250/0/+260

5 1367 2075 31 2 73 75 215 215 100 112 53 51 0/0/0 0/0/0
6 640 1887 0 0 84 83 371 143 2 29 2 11 0/0/0 −25/0/+25

7 282 1351 0 0 21 21 92 91 73 72 17 17 0/0/0 0/0/0
8 483 3863 9 11(5) 14 14 24 24 11 11 6 6 −2/0/+1 −2/0/+1

9 422 1635(1) 25 3(16) 23 22 14 12 4 4 4 4 −2/0/+1 −2/0/+1

Table 2: Evaluation results of (r)egular parametrization and (c)ross-file
parametrization

#
tests removed (%) clones removed (%)

r c r c

1 0.62% 50.00%
2 0.26% 25.00% 33.33%
3 1.82% 47.83%
4 14.15% 22.80% 33.42% 45.82%
5 7.32% 8.20% 71.16% 75.81%
6 0.31% 4.53% 1.08% 11.05%
7 25.89% 25.53% 97.83% 97.80%
8 2.28% 70.83%
9 0.95% 57.14% 66.67%

Table 3: Relative measure of the results of (r)egular parametrization and (c)ross-
file parametrization

skipped or failed tests after applying the refactoring in the corresponding mode
with respect to the baseline.

Regular parametrization. We observe the following interesting cases where we
have affected the test-suite: in repository 4, five additional tests failed post-
refactoring. These failing tests were invoking other tests. They failed because the
tests they were invoking had been removed as part of the refactoring, leading to
an error.

In repositories 8 and 9, two fewer tests passed, but only one more test
failed. These interesting cases of the one disappearing test are due to PyTeRor
parametrizing two tests within a unittest test class. pytest can run tests
written using the unittest framework. However, pytest runs these tests as

10 Sebastian Kingston, Violet Ka I Pun , and Volker Stolz

unittest tests, not as pytest tests. Therefore, when we attempt to parametrize
these tests using pytest’s own parametrize decorator, the decorator is not rec-
ognized, leading the test to fail. Another consequence of not recognizing the
decorator is that the parametrized test is seen as a single test item, rather than
multiple.

Cross-file parametrization. In repositories 1, 2, 3, 8 & 9, the same number of
tests were removed as using the default “regular” option. For repositories 2, 7 & 9,
fewer clones and clone classes were found than using the default option, but this
did not affect the results, apart from the percentage of clones removed, shown in
Table 3, which naturally increased. Both repository 1 and 3 had identical results
between the default and the cross-file option.

Repository 5, where 12 additional tests were removed, despite fewer clone
classes being found than with the default option. These removed tests did not
affect the number of passing and failing test items. The 12 additional tests that
were removed would have been identified using the default option as well, but
would have then been discarded as they contained differences in scope. As we
discovered the same amount of relevant clones, but removed a slightly higher
amount of tests, the percentages across files are slightly higher than the cor-
responding percentages for regular parametrization of repository 5, shown in
Table 3.

However, the refactoring was unsuccessful for the following repositories: in
repository 4, 165 additional tests were removed. 245 fewer test items passed
compared to the default option (and likewise, 255 additional test items failed).
The discrepancy between additional tests removed and additional test items
failed is due to the fact that many of the 165 tests that were removed contained
multiple test items, due to being parametrized.

In repository 6, 27 additional tests were removed. 25 fewer test items passed
compared to the default option (and likewise, 25 additional test items failed).
The large majority of cross-file parametrizations in this repository lead to failed
tests, and thereby also failed refactorings.

3.4 Discussion

Apart from these two exceptions which constitute seven failed tests across all
test suites in the evaluation, the refactoring was successful. In total, 468 tests
were removed from the suites, though over half of these were from a single repos-
itory (270, repository 4). Many of the discovered clones were unparametrizable
for some reason or other. Eldh found that there was typically a 30%–50% code
cloning overlap in test suites [5], though this was generally for larger test suites
than we are looking at, and accounted for clones of types 1–3. Despite only look-
ing for Type 2 clones, for some repositories, we found similar numbers of clones.
These were mainly repositories 4, 6 & 7, of which 4 & 7 had large numbers of
parametrizable clones. Generally, the number of clones as a percentage of the
number of tests in total was highest for the largest test suites. This means a
higher share of tests in in the largest test suites were clones than in the smaller

https://orcid.org/0000-0002-8763-5548
https://orcid.org/0000-0002-1031-6936

Automated Clone Elimination in Python Tests 11

test suites, the one exception being repository 7, with less than 300 tests, and
almost 100 clones. Extrapolating the general trend, had we chosen repositories
with even larger test suites, we could perhaps have found an even higher per-
centage of clones, as found by Eldh. However, a high number of clones does not
necessitate a high number of parametrizable clones.

Although the refactoring was successful, for most of the repositories the test
suites themselves were not reduced in size by large amounts. For four of the repos-
itories, less than 1% of tests were removed, with two more repositories hovering
around 2%. However, the low number of removed tests in these repositories can
be explained by the low number of clones found in them, with the exception of
repository 6, which consists of a large number of clone classes spread out across
multiple files. For the three remaining repositories in the evaluation, the test
suites were reduced significantly, ranging from a 7% to a 26% reduction in the
number of tests. For these repositories, with this clear reduction in the number
of code clones, we argue that the refactored test suites have improved maintain-
ability when compared to the same test suites pre-refactoring. This is because
as the number of code clones in the test suite decreases, maintainability of the
suite increases. Rather than having to maintain multiple similar tests which are
clones, a single test can instead be maintained.

Our cross-file parametrization does not work in most cases. For it to work in
the same way we have parametrized other clone classes, it requires all clones in a
class to have the same non-local variables, containing the same values, despite the
fact that the clones exist in different scopes. For our cross-file implementation,
we failed to take into account that same names in different scopes could have
different values. Asserting that the same names across different scopes have
the same values can be a difficult task, and using static analysis, is in many
cases impossible, as we cannot know the runtime value. If we assume that the
assertion (same name, same value) holds true for a clone class, this effectively
means that the clones are exactly the same test, except for potential differing
literal values. Thus, they can be parametrized. Of the cross-file clone classes
we have anecdotally looked at, the large majority have differences in non-local
names. In this way, they cannot be parametrized using our current solution.

Multiple facets of PyTeRor affect code quality negatively. The generated names
are always of the form parametrized_constant_X and parametrized_name_X,
where X is a number. Generally, good variable names describe the value they con-
tain in some way. These generated variables names do not. In fact, by extracting
and replacing the original global variable names in the target clone with gener-
ated names, we are reducing the quality of the code by making it more difficult
to understand. However, these situations where variable names are extracted
and replaced with a new generated variable name only occur when clones use
different global variables in the same place. In order for the global names to
be parametrized, they must be extracted into the parametrize decorator and
represented through another variable name. Optimally, the new variable name
should have something to do with the extracted names, so that it is easier to un-
derstand what is going on inside the function. The form parametrized_name_X

12 Sebastian Kingston, Violet Ka I Pun , and Volker Stolz

does not build much understanding of what the variable is used for. However,
it does immediately communicate that the variable is parametrized, leading the
reader to the parametrize decorator in order to see what the actual value is for
each test run. Removal of comments effects understandability of the refactored
code negatively.

Though all this obfuscation is to the detriment of code quality, one could
also argue that removing clones from the test suite improves the code quality.
The code becomes easier to maintain in line with the usual argument for clone
elimination: previously, changes which were required for all clones in a class had
to be made independently for each clone. Post-refactoring, these changes only
need to be made in a single place, the target clone. In addition to practicality, this
can be helpful for multiple reasons, e.g., removing bugs or vulnerabilities. When
clones in a clone class share a common bug or vulnerability, by parametrizing
and removing these clones, the bug or vulnerability only needs to be patched in
a single place, rather than multiple.

3.5 Threats to validity

In this section we will account for some threats to the validity of the evalua-
tion on whether our tool can successfully and correctly replace clones through
parametrization.

Reliability. We are entirely dependent on our clone detector, NiCad, to iden-
tify and inform us on which functions are clones. Except for cross-comparing
all tests in a suite ourselves, which quickly becomes infeasible as the test suite
grows, we have no way of asserting that we have discovered all clones in the
test suite. NiCad itself has been shown previously to have some bugs in its
Python grammar, and there could plausibly be more. For example, it seems not
to identify clones with slight differences in formatting, such as the example in
Figure 5 (line breaks added for presentation), which is from Repository 3. The
first two of these clones are correctly identified, and therefore also parametrized.
However, the third, test_should_strip_auth_http_downgrade, is not consid-
ered by NiCad to be a clone of the others, and is therefore not parametrized by
PyTeRor.

Internal validity. Unfamiliarity with the projects themselves and the test suites
they contain can also be a threat to the validity of the evaluation. This can be
a problem on multiple fronts. Firstly, we do not have exhaustive knowledge of
the code we are running the evaluation against. This creates problems such as
those identified above, where we cannot assert whether we know of all clones
in each test suite. Secondly, we could be missing some important characteristics
about the test suites. For a concrete example we look to Repository 4, where
many of the discovered clones are within the directory ‘test_tutorial’, which
may in explain to a certain extent why over half of the tests in the test suite of
Repository 4 are clones. Without familiarity of the projects we are testing on,
we lack knowledge of specific characteristics which could be affecting the results
of the evaluation.

https://orcid.org/0000-0002-8763-5548
https://orcid.org/0000-0002-1031-6936

Automated Clone Elimination in Python Tests 13

def test_should_strip_auth_port_change(self):
s = requests.Session()
assert s.should_strip_auth(

"http://example.com:1234/foo", "https://example.com:4321/bar"
)

def test_should_strip_auth_host_change(self):
s = requests.Session()
assert s.should_strip_auth(

"http://example.com/foo", "http://another.example.com/"
)

def test_should_strip_auth_http_downgrade(self):
s = requests.Session()
assert s.should_strip_auth("https://example.com/foo",

"http://example.com/bar")

Fig. 5: Example of clones not identified by NiCad

External validity. Another point which can strongly affect the results of the
evaluation is the choice of repositories. Multiple characteristics were required for
a repository to be included in the evaluation. The repositories were required to
be open source, contain at least 100 tests and be easily runnable using pytest.
Each of these requirements may have affected the outcomes of the evaluation. For
instance, a closed-source repository may be less maintained, and could therefore
contain a higher number of clones in its test suite than a comparable open-source
repository. Likewise, the same proposed correlation could exist between the ease
of running a test suite and the number of code clones it contains. Thereby,
we could be introducing biases into the evaluation with the repositories we are
choosing to include. With regards to open-source vs closed-source repository,
Raghunathan et al. found no difference in software quality between the two
development practices [12]. Furthermore, Monden et al. mention the correlation
between software quality and the existence of code clones in a project [11].
However, the two definitions of software quality differ somewhat, meaning we
cannot extrapolate that comparable closed-source and open-source versions of
software would contain a similar amount of code clones. Similarly, we have not
considered the development processes for the selected repositories.

Most importantly for the results of the evaluation, the current number of
repositories included in the evaluation is relatively small. We do not have enough
repositories to speak confidently of the usefulness of PyTeRor in removing code
clones from test suites, and the current choice of repositories shows quite some
variance. If all repositories displayed relatively similar results, in terms of similar
percentages of tests removed from their test suites, we could perhaps point in
a general direction with regards to the effectiveness of PyTeRor. Such varying
results, however, leave us far from any conclusion of significance.

14 Sebastian Kingston, Violet Ka I Pun , and Volker Stolz

Construct validity. As we change the names of tests, we cannot exactly map test
runs before and after to each other. Hence we do not know whether the passing
and failing tests are the same pre-refactoring as post-refactoring; we only know
that the totals are the same. Additionally, when counting removed clones, we
include target clones which may in fact still be a clone of other tests in the suite,
either due to splitting of the clone class or singular clones being discarded from
the parametrization of the class.

4 Conclusion

Through PyTeRor, we have demonstrated that it is possible to reduce the size
of pytest test suites by automatically refactoring Type 2 code clones using
parametrization. We have delineated the implementation of PyTeRor in some
detail, bringing up and discussing issues along on the way. In designing and con-
ducting an evaluation, we have performed this refactoring on nine open source
repositories from Github.com. Evaluating the results, for some of these reposi-
tories we found and parametrized large numbers of clones, whilst for others we
found few clones, though all repositories had at least one test removed. We dis-
cussed the results of the evaluation and other aspects of PyTeRor. These aspects
were the quality of the refactored code, and whether it was a true refactoring,
due to the fact that certain behaviour is not preserved after applying pytest on
the refactored code.

Through our evaluation, we have demonstrated that PyTeRor has the abil-
ity to parametrize Type 2 code clones in pytest test suites, though there are
also some Type 2 clones which PyTeRor cannot parametrize, such as those
with attribute differences or differences in scope. Though there are some excep-
tions, the refactored tests are generally correct, producing the same behaviour
as pre-refactoring. We argue that this refactoring increases the maintainability
of pytest test suites, as we reduce the number of code clones in a suite.

4.1 Related Work

Though we have not found other work performing the same kind of automated
refactoring of code clones in test suites for other languages or frameworks, much
work has been done relating to multiple aspects of this thesis.

Zhang et al. created a tool for performing fully automated refactorings of
Python code. However, unlike PyTeRor, this tool targets non-idiomatic Python
code, with the intention of transforming it into idiomatic Python code. This is
done for nine specific idioms identified by Zhang et al. [18].

Xuan et al. performed automatic test code refactoring [17], though this refac-
toring is performed with the intention of improving dynamic analysis, rather than
to reduce the number of code clones in a test suite, as has been our goal. The
concept of test code refactoring in general has also been covered by Deursen
et al. [16], displaying eleven different test smells, as well as six refactorings for

https://orcid.org/0000-0002-8763-5548
https://orcid.org/0000-0002-1031-6936

Automated Clone Elimination in Python Tests 15

these. Manual test refactorings have also been discussed in detail by Meszaros,
in his book xUnit Test Patterns: Refactoring Test Code [10].

With regards to refactoring detected clones, some previous work exists. Baars
and Oprescu target clones in object-oriented languages, detecting clones which
are refactorable [1]. However, they do not target clones in test suites specifically,
nor do they introduce an automated refactoring solution.

Refactoring code clones in test suites has been covered by Tsantalis et al. [15],
though test code was not the main focus of their work. They found that clones
in production code were more often refactorable than clones in test code. They
found that clones with close relative locations are more refactorable than clones
in distant relative locations. This relates to our findings that cross-file pytest
code clones often are not refactorable. Additionally, they found that NiCad’s
consistent renaming option is most suitable for detecting code clones meant for
refactoring. In practice, this may be true, as clones must have consistent local
names to be candidates for our refactoring. However, through the implementa-
tion of PyTeRor, we found that this option may miss certain types of clones,
namely clones with consistent local names but inconsistent non-local names.
In order to detect as many refactorable clones as possible, blind renaming in
NiCad, in combination with filtering out clones with inconsistent local names,
allows detection of potentially higher numbers of refactorable clones.

Work on automated clone detection and elimination has also been published
for other languages, examples being Erlang [9] and Haskell [3]. Numerous other
techniques and tools for semi- or fully automated refactoring of code clones also
exist, as shown by the literature review conducted by Baqais and Alshayeb [2].

4.2 Future Work

Parametrizing test clones in other languages. One interesting topic of research is
performing this same parametrization-refactoring for testing frameworks in other
languages. An example of such a framework is JUnit, a testing framework for
Java, which can parametrize tests through the @ParameterizedTest annotation
(as of JUnit 5). For single parametrized values, the @ValueSource annotation
can be used. For multiple values, either the @CsvSource annotation, which takes
multiple strings containing comma separated values, or the @MethodSource an-
notation, which takes a string containing method name, can be used.

Many xUnit-style testing frameworks have features allowing parametrization
of tests, such as xUnit.net (C#/.NET) and cppUnit (C++). All frameworks
with such features would be candidates for parametrization-refactoring as done
in this paper.

Qualitative evaluation. The choice of clones to consider and the exact form in
which to refactor them (e.g., choosing the necessary fresh names for parameters)
deserves a closer look. Clones are not universally seen as bad [7], and developers
may have preferences for what or how to refactor. Developer feedback would be
valuable input before taking our work further.

16 Sebastian Kingston, Violet Ka I Pun , and Volker Stolz

Larger-scale evaluation. Evaluating the effectiveness of PyTeRor in parametriz-
ing code clones would be made easier if we could benchmark results against a
standard or database of pytest code clones. Benchmarks like this are used to
evaluate metrics of tools in related fields, one such example being BigCloneE-
val [14], which can be used to evaluate the effectiveness of code clone detectors.
Another interesting continuation of the research from this thesis would be to
run the same evaluation on a larger scale. By creating a script which could clone
git repositories, run pytest and collect results, run PyTeRor, then run pytest
again, comparing results to the first run, we could automate the evaluation to be
run on a large number of test suites. This would give us more data, which again
could lead to interesting analysis, both on the effectiveness of PyTeRor and on
the state of pytest test suites in general, with regards to Type 2 code clones. Of
course, we would still only be able to analyse open-source test suites, and any
conclusion made would not necessarily hold true for closed source test suites.

Continuing work on PyTeRor. In terms of continuing the work on PyTeRor itself,
handling pytest’s many options for init files would go a way to making PyTeRor
universally appliable on pytest test suites, including those overriding the default
test discovery rules. Additionally, extraction of common initialisation code into
fixtures is also an interesting area of research. This method of refactoring could
potentially reduce the size of many tests within the test suite, in addition to
improving code quality and maintainability. This could be implemented either
as an extension of PyTeRor, or alternatively as a separate tool.

Integration into IDEs. We see some potential for integrating clone-detection and
our refactored solution as a suggestion into integrared development environments
(IDEs). Clones in tests, just like regular clones, can surreptitiously creep into a
code-base, but will most likely be more clustered in the project structure than
general clones. We conjecture that novice beginners might have some benefit from
being introduced to the concept of test case parametrization through interactive
use, and hence subsequently make direct “proper” use of the testing framework.

References

1. Baars, S., Oprescu, A.: Towards automated refactoring of code clones in object-
oriented programming languages. In: Proceedings of the Seminar Series on Ad-
vanced Techniques & Tools for Software Evolution (SATTOSE 2019). CEUR Work-
shop Proceedings, vol. 2510. CEUR-WS.org (2019)

2. Baqais, A.A.B., Alshayeb, M.: Automatic software refactoring: a sys-
tematic literature review. Software Quality Journal 28, 459–502 (2020).
https://doi.org/10.1007/s11219-019-09477-y

3. Brown, C., Thompson, S.: Clone detection and elimination for Haskell. In: Pro-
ceedings of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and Pro-
gram Manipulation. p. 111–120. PEPM ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1706356.1706378

https://orcid.org/0000-0002-8763-5548
https://orcid.org/0000-0002-1031-6936

Automated Clone Elimination in Python Tests 17

4. Cordy, J.R., Roy, C.K.: The NiCad clone detector. In: 2011 IEEE
19th Intl. Conf. on Program Comprehension. pp. 219–220. IEEE (2011).
https://doi.org/10.1109/ICPC.2011.26

5. Eldh, S.: On technical debt in software testing - observations from industry. In:
Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Ver-
ification and Validation. Software Engineering. LNCS, vol. 13702, pp. 301–323.
Springer (2022)

6. Holger Krekel and others: pytest: helps you write better programs (2024), https:
//docs.pytest.org/en/8.2.x/

7. Kapser, C., Godfrey, M.W.: "Cloning Considered Harmful" considered harmful.
In: 13th Working Conference on Reverse Engineering. pp. 19–28. IEEE (2006).
https://doi.org/10.1109/WCRE.2006.1

8. Kingston, S.: Automated Clone Elimination in Python Tests. Mas-
ter’s thesis, University of Oslo (June 2024), https://www.mn.
uio.no/ifi/english/research/groups/psy/completedmasters/2024/
automated-clone-elimination-in-python-tests.html

9. Li, H., Thompson, S.: Incremental clone detection and elimination for Erlang pro-
grams. In: Giannakopoulou, D., Orejas, F. (eds.) Fundamental Approaches to Soft-
ware Engineering. LNCS, vol. 6603, pp. 356–370. Springer (2011)

10. Meszaros, G.: xUnit Test Patterns: Refactoring Test Code. Addison-Wesley Pro-
fessional (2007)

11. Monden, A., Nakae, D., Kamiya, T., Sato, S., Matsumoto, K.: Soft-
ware quality analysis by code clones in industrial legacy software.
In: Proc. Eighth IEEE Symp. on Software Metrics. pp. 87–94 (2002).
https://doi.org/10.1109/METRIC.2002.1011328

12. Raghunathan, S., Prasad, A., Mishra, B., Chang, H.: Open source versus closed
source: software quality in monopoly and competitive markets. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans 35(6), 903–918
(2005). https://doi.org/10.1109/TSMCA.2005.853493

13. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Queen’s
School of computing TR 541(115) (2007), https://research.cs.queensu.ca/
TechReports/Reports/2007-541.pdf

14. Svajlenko, J., Roy, C.K.: BigCloneEval (December 2023), https://github.com/
jeffsvajlenko/BigCloneEval, commit hash 6d393ec

15. Tsantalis, N., Mazinanian, D., Krishnan, G.P.: Assessing the refactorability of soft-
ware clones. IEEE Transactions on Software Engineering 41(11), 1055–1090 (2015).
https://doi.org/10.1109/TSE.2015.2448531

16. Van Deursen, A., Moonen, L., Van Den Bergh, A., Kok, G.: Refactoring test code.
In: Proc. 2nd Intl. Conf. on Extreme Programming and Flexible Processes in Soft-
ware Engineering (XP2001) (2001), https://ir.cwi.nl/pub/4324/04324D.pdf

17. Xuan, J., Cornu, B., Martinez, M., Baudry, B., Seinturier, L., Monper-
rus, M.: B-refactoring: Automatic test code refactoring to improve dy-
namic analysis. Information and Software Technology 76, 65–80 (2016).
https://doi.org/10.1016/j.infsof.2016.04.016

18. Zhang, Z., Xing, Z., Xia, X., Xu, X., Zhu, L.: Making Python code id-
iomatic by automatic refactoring non-idiomatic Python code with pythonic id-
ioms. In: Roychoudhury, A., Cadar, C., Kim, M. (eds.) Proc. of the 30th
ACM Joint European Software Engineering Conf. and Symp. on the Foun-
dations of Software Engineering, (ESEC/FSE). pp. 696–708. ACM (2022).
https://doi.org/10.1145/3540250.3549143

https://docs.pytest.org/en/8.2.x/
https://docs.pytest.org/en/8.2.x/
https://www.mn.uio.no/ifi/english/research/groups/psy/completedmasters/2024/automated-clone-elimination-in-python-tests.html
https://www.mn.uio.no/ifi/english/research/groups/psy/completedmasters/2024/automated-clone-elimination-in-python-tests.html
https://www.mn.uio.no/ifi/english/research/groups/psy/completedmasters/2024/automated-clone-elimination-in-python-tests.html
https://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf
https://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf
https://github.com/jeffsvajlenko/BigCloneEval
https://github.com/jeffsvajlenko/BigCloneEval
https://ir.cwi.nl/pub/4324/04324D.pdf

	Automated Clone Elimination in Python Tests

