
Automated Clone
Elimination in Python Tests

Sebastian Kingston (UiO), Volker Stolz (UiO & HVL),
Violet Ka I Pun (HVL)

Outline

● Motivation: code-clones
● Some background
● PyTeRor: an example
● Experimental results
● Implementation of PyTeRor
● Discussion
● Related work
● Future work & Conclusion

2

https://github.com/semaki2000/PyTeRor

https://github.com/semaki2000/PyTeRor

Motivation

● Eldh reports 30%-50% code clone overlap in test suites
○ Some suites containing up to 80% overlap

● Test code often given less attention
● Python - currently most “popular” programming language - TIOBE Index

○ Pytest - popular Python testing framework
○ Built-in parametrization

● Type 2 clones
○ Same structure, different values
○ Candidates for parametrization

3

Sigrid Eldh. ‘On Technical Debt in Software Testing - Observations from Industry’.
In: Leveraging Applications of Formal Methods, Verification and Validation.
Software Engineering. ISoLA 2022.

PyTeRor

4

Background - Code clones

● Code fragment
○ Single continuous piece of code

● Clone pair
○ Two similar/duplicate code fragments

● Clone class
○ Group of similar/duplicate code fragments

● Code clone types
○ Defined by level of similarity between clones

5

Background - Type 1 code clones

6

Background - Type 2 code clones

7

Consistent or blind clone: consistent renaming of identifiers?

Background - Type 3 code clones

8

Background - Type 4 code clones ("semantic clone")

9

Background - NiCad Clone Detector

● Well-known clone detector, Python support
● Easily configurable
● Automated Detection of Near-Miss Intentional Clones (types 1, 2, 3)
● Steps:

1. Parsing and extracting fragments at given granularity (functions, blocks)
2. Renaming, filtering and normalization of extracted fragments
3. Comparing extracted fragments to identify clones

https://www.txl.ca/txl-nicaddownload.html 10

https://www.txl.ca/txl-nicaddownload.html

Background - Pytest

11

Background - Pytest fixtures

● Set-up functions
● Invocated by being supplied as formal parameter for pytest test

12

Background - Pytest markers

● Used to identify or run
subset of test suite

● Tests can have multiple
markers

13

Background - Pytest parametrization

● Built-in pytest marker which takes arguments
● Supplied values are mapped to parameter names
● Each set of parentheses is parameters for single run of test

14

PyTeRor: an example

Pre-refactoring - clones Post-refactoring - target

15

Regular parametrization vs cross-file parametrization

● Regular parametrization
○ Does not refactor clones between files
○ Instead, splits clone class based on scope

● Cross-file parametrization
○ Does not split clone class if spread over more than one file
○ Our limitation: currently no deep semantic analysis

16

Experimental results 1/2

17Results of (r)egular/(c)rossfile parametrization

test definitions (T), number of (p)assing, (s)kipped or (f)ailed test runs
clone classes (cs), clones (cl) identified by PyTeRor, tests removed (tr),
parametrized clone classes (cp)

Experimental results 2/2

18Relative measure of the results of (r)egular/(c)rossfile parametrization

Threats to validity

● Dependent on results from clone detector
○ Certain clones are not found (different formatting)

● Unfamiliarity with projects we are testing
○ Characteristics which could bias results

● Only using open-source repositories
○ Results could be different for nine closed-source repositories

● Relatively low number of repositories
○ Cannot make any conclusions of significance

19

PyTeRor

20

Identifying test files

● Isolate files following pytest file naming rules
● Run clone detection on isolated set of files
● Avoids clone pairs between test and non-test code

21

● NiCad6
● Modified Type 2 configuration file

○ Literal abstraction
○ Blind clones

● Modified Python grammar file
○ Fix for bug in built-in grammar
○ Discrepancies between NiCad grammar and Python’s ast module grammar

Code clone detection

Code clone detection

● NiCad6
● Modified Type 2 configuration file

○ Literal abstraction
○ Blind clones

● Modified Python grammar file
○ Fix for bug in built-in grammar
○ Discrepancies between NiCad grammar and Python’s ast module grammar

22

Clone class analysis

Analyse clone classes found in previous phase

Steps:

1. Processing clones
2. Normalization
3. Splitting clone classes
4. AST analysis
5. Extracting differences

23

Processing clones

● Remove non-test clones
○ Fixtures
○ Other functions

● Remove clones with “bad” parametrize decorators
○ No direct access to parameter names, parameter values
○ Example:

24

Normalization - Standardize AST of all clones

In order for simultaneous iteration

25

Normalization - Standardize AST of all clones

In order for simultaneous iteration

●

26

Splitting clone classes

● Split on scope
○ Clones in different scopes cannot be parametrized

● Split on decorators
○ Clones with different decorators cannot be parametrized
○ Exception: certain built-in pytest decorators

■ Marker decorators, incl. parametrize decorator

27

AST analysis - simultaneous iteration over ASTs

● Standardized ASTs
● Certain nodes may differ in values for Type 2 clones

○ ast.Constant
○ ast.Name
○ ast.Attribute

● Discovered differences are stored
● Some special cases

○ Inner functions with decorators
○ Import statements
○ Keywords in function call

28

AST analysis - Keywords in function calls

29

After AST analysis - split clone classes

● Split on attributes
○ We do not parametrize clones

differing in attribute usage
○ Technically possible

● Split on fixtures
○ Cannot parametrize clones

employing different fixtures
○ Not supported by pytest

30

Extracting differences

● Stored differences added to new parametrize decorator
● Generating variable names:

○ parametrized_constant_N
○ parametrized_name_M
○ N and M are incrementing numbers
○ Nodes appearing multiple times receive same name

● Variable names added to target clone/function and parameters
● Combining new parametrization with pre-existing parametrization

31

Unparsing
● Unparse target clone from AST, format, insert in file
● Remove other clones from file
● Preserves formatting and comments in file

○ Except in target clone

Discussion 1/2

● Exceptions to successful refactoring
○ Tests invoking (removed) tests
○ Parametrizing tests from other frameworks (unittest)

● Most test suites were not reduced by large amounts
○ Six repos: ~2% or fewer tests removed
○ Many of these repos had few clones
○ Repos with many clones had higher %

● Evaluating PyTeRor is difficult, no benchmark
○ How many clones are we failing to parametrize?

32

Discussion 2/2

● “Refactoring” - Certain behaviour is affected
○ Pytest’s -k option, with pre-set IDs (overwritten by PyTeRor)
○ Pytest does not support multiple IDs
○ Other behaviour is consistent pre- and post-refactoring

● Code quality - code becomes less legible
○ Generated variable names - “parametrized_constant_0”
○ Parametrizing function names
○ Comments removed
○ However: Reducing no. of clones is often tied to increased code quality

■ Maintainability

33

Alternative ideas for implementation

● Refactoring suggestions
○ Instead of actual refactorings
○ Manual refactoring -> higher code quality
○ Plug-in/extension to IDEs

● Extracting common initialisation code
○ Creating fixtures
○ Many non-clone tests contain common initialisations/set-up

34

Related work

● Automated refactorings of Python code
○ Zhang et al., specifically targeted at transforming non-idiomatic code into idiomatic

● Test code refactoring
○ Meszaros, xUnit Test Patterns: Refactoring Test Code
○ Deursen et al, eleven test smells + six refactorings for these
○ Xuan et al, automatic test code refactoring, though intended to improve dynamic analysis

● Refactoring code clones
○ Baars and Oprescu, identifying refactorable clones
○ Tsantalis et al., clones in production code vs in test code
○ Baqais and Alshayeb cover multiple tools and techniques for automated detection and

elimination

35

Future work

● Parametrizing test clones in other languages
○ Java, C++, C#

● Larger-scale experiment
○ Potentially automated
○ Could provide more interesting results for analysis
○ Measure coverage as well?

● Continuing work on PyTeRor
○ Pytest configuration files
○ Extracting common initialisation code?

36

Conclusion

● PyTeRor: reducing pytest test suites though refactoring Type 2 code clones
● PyTeRor does not parametrize certain code clones, e.g:

○ Clones with attribute differences
○ Clones with scope differences

● Successful refactoring except
specific cases

37

https://zenodo.org/records/11145543

https://github.com/semaki2000/PyTeRor

https://zenodo.org/records/11145543
https://doi.org/10.5281/zenodo.11145543
https://github.com/semaki2000/PyTeRor

AST analysis - Inner functions with decorators

38

AST analysis - Import statements

39

Analysing differing identifiers

● Non-locally defined variables
● Locally defined variables
● Mix between local and non-local

40

Analysing differing identifiers - non-locally defined

● Variable names extracted into new parametrize decorator
● Replaced with generated variable name in refactored code

41

Analysing differing identifiers - locally defined

42

Analysing differing identifiers - mixed local/non-local

● Unparametrizable - cannot extract the local variables

43

Combining pre-existing and new parametrizations

Extracting differences within clones

Pre-existing parametrize decorator

Adding pre-parametrization to new parametrization

44

Extracting parametrized names

Pre-existing parametrize decorator

Extracting differences within clones

Replacing pre-parametrized names with values

45

Using pytest.param in parametrize decorator - ids

● Function names of tests are preserved in refactored code through id keyword
● Preserves behaviour for pytest’s -k option

46

Using pytest.param in parametrize decorator - markers

● Markers are preserved through the marks keyword
● Preserves behaviour for pytest’s -m option

47

